Skip to content Skip to navigation

New AI-driven algorithm can detect autism in brain “fingerprints”

Child with doctor

Stanford scholars have created an algorithm that uses functional magnetic resonance imaging scans to find patterns of neural activity in the brain that indicate autism.

iStock/mmpile

Mar 28 2022

By Adam Hadhazy

Stanford researchers have developed an algorithm that may help discern if someone has autism by looking at brain scans. The novel algorithm, driven by recent advances in artificial intelligence (AI), also successfully predicts the severity of autism symptoms in individual patients. With further honing, the algorithm could lead to earlier diagnoses, more targeted therapies, and broadened understanding of autism’s origins in the brain.

The algorithm pores over data gathered through functional magnetic resonance imaging (fMRI) scans. These scans capture patterns of neural activity throughout the brain. By mapping this activity over time in the brain’s many regions, the algorithm generates neural activity “fingerprints.” Although unique for each individual just like real fingerprints, the brain fingerprints nevertheless share similar features, allowing them to be sorted and classified.

As described in a new study published in Biological Psychiatry, the algorithm assessed brain scans from a sample of approximately 1,100 patients. With 82% accuracy, the algorithm selected out a group of patients whom human clinicians had diagnosed with autism.

“Although autism is one of the most common neurodevelopmental disorders, there is so much about it that we still don’t understand,” says lead author Kaustubh Supekar, a Stanford clinical assistant professor of psychiatry and behavioral sciences and Stanford HAI affiliate faculty. “In this study, we’ve shown that our AI-driven brain ‘fingerprinting’ model could potentially be a powerful new tool in advancing diagnosis and treatment.”