Project Listing
NeuroChoice: Optimizing Choice
Optimizing choice: From neuroscience to public policy
Brain mechanisms of spatial reasoning in mathematics
Creating an advanced transgenic animal model of autism
Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.
A novel PET radioligand to identify microglial inflammation in Alzheimer's disease
Geometric analysis and variability mapping in human white matter brain structures
Understanding the relationship between structure and function in the human brain is a key interest in neuroscience. In recent years the focus is turning to understanding the role of the white matter in human cognition, brain function and neurological disorders.
Understanding cellular responses induced by chronic implantation of electrodes using a novel human neural differentiation platform
Electrodes implanted in the brain have great potential, with applications in neurodegenerative disease, brain-computer interfaces, and more. However, the presence of electrodes in brain tissue causes a response known as gliosis, in which a scar forms around the electrode, reducing its effectiveness and access to neurons.
Modeling proprioceptive deficits for the design of novel sensory augmentation for post-stroke movement rehabilitation
Stroke is the main cause of adult disability; 80% of survivors sustain motor (movement) deficits that interfere with activities of daily living. There exists no proven therapeutic strategy for motor recovery of the upper extremity following stroke.
High-speed nanomechanical probing of auditory mechano-sensitive cells
Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.
Quantitative imaging for multi-scale modeling of neurological diseases
My proposed visit to the Van De Ville lab is centered on the idea to expand our methods beyond brain tumors to other neurological diseases using the Van De Ville lab’s expertise in neuro-imaging. Imaging genomics has been focused mainly on oncology; however, other neurological diseases can be studied in the same way.
Improve reproducibility and transparency in the field of neuroimaging by applying nonparametricstatistical methods and writing R packages.
Brain data analyses involves many steps and every step is prone to errors and uncertainties. Ignoring uncertainties can potentially leading to overconfident conclusions. To improve reproducibility it is important to propagate errors throughout the anlaysis. One crucial step in functional imaging studies is image registration to align subject-specific brain anatomy to a common brain atlas.
Biologically plausible neural algorithms for learning structured sequences
Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.
Neural mechanisms of learning multiple motor skills and implications for motor rehabilitation
A hallmark of the motor system is its ability to execute different skilled movements as the situation warrants, thanks to the flexibility of motor learning. Despite many behavioral studies on motor learning, the neural mechanisms of motor memory formation and modification remain unclear.
Engineering versatile deep neural networks that model cortical flexibility
In the course of everyday functioning, animals (including humans) are constantly faced with real-world environments in which they are required to shift unpredictably between multiple, sometimes unfamiliar, tasks. But how brains support this rapid adaptation of decision making schema, and how they allocate resources towards learning novel tasks is largely unknown both neuroscientifically and algorithmically.
Interoception: The sense of the physiological condition of the body
To understand how sensory information and physiological state integrate to drive decisions and behaviors. Dr. Xiaoke Chen's lab is focusing now on interoception, which is the sense of the physiological condition of the body. This include our abilities to feel hungry or satiated, to sense heightened blood pressure and heart rate during stress, and to discriminate different types of pain.
Identification of sex hormone interacting proteins
Enabling faster and more responsive voltage imaging through computational biophysics
TrkA-ing the chronic pain
Remote and localized neural activation using sonomagnetic stimulation
A novel sigma-1 receptor PET radioligand as a probe of ketamine’s rapid therapeutic action in disorders of human brain and behavior: Pilot study
The impact of early medial temporal lobe Tau in human cognitive aging
New tools, analytic methods and conceptual approaches for harnessing plasticity in the human brain
The neural prosthetics translational laboratory
StrokeCog
StrokeCog is focused on cognitive problems after stroke. The team leads a study aimed at identifying if neuroinflammation plays an important role in the development of post-stroke cognitive decline.
Discovering new volitionally-controllable neural degrees-of-freedom for neural prostheses
A top priority for people with paralysis is reach and grasp ability. Technologies such as robotic arm prostheses or electrically stimulating paralyzed muscles can meet this need. Existing methods rely on the remaining muscles, are unintuitive and require laborious sequences of simple commands. Reading out a patient’s desired movement directly from their brain could overcome these limitations.