Project Listing
Modelling the Pupil Light Reflex for Non-Image Forming Vision
Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.
Controlling schistosomiasis via CRISPR/CAS9-mediated gene drive
Schistosomiasis is a parasitic disease second only to malaria in its human health and economic impact on tropical nations.
Weak supervision in medical multi-modal time series
The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.
A spatiotemporally-resolved circuit model of the physiologic and behavioral effects of subanesthetic ketamine activity in the limbic system
Developing a platform of biocompatible nanoparticles that uncage a drug payload upon ultrasound application.
A multi-rank statistical model to determine the impact of behavioral state on navigational coding by medial entorhinal cortex
Behavioral state—such as alertness or exhaustion—dramatically impacts how our brains function. Yet, in spite of the key role that it plays in cognition, how behavioral state influences brain function remains a central mystery in neuroscience.
Ultrasonic neural control and neuroimaging in the awake, mobile, and behaving small rodent
Sensory processing in a pre-seizure state
Genetic tools to determine circuit-specific roles of myelination
These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.
Injectable photovoltaics for a wireless, gliosis-free neural stimulation interface
We believe our research has the potential of generating transformative results for both neuroscience research and neurological applications, also offering strategies to manipulate key intracellular pathways to prevent gliosis in therapeutic neural implants.
Investigating the role of a human-specific repeat element in neuropsychiatric disease risk and cerebellar function
Quantifying auditory-vocal affect in human social communication
This proposal brings together faculty with this diverse expertise to develop the first gold standard test of auditory-vocal affect. Once developed, validated, and normed, we will deploy this test in the clinical context of autism to quantify impairments and direct neurobiological investigation.
How animals keep time annually: molecular mechanisms of the seasonal rhythm
Adaptation to environmental variations is vital for animal survival. While short-lived organisms face unpredictable environmental fluctuations, long-lived animals are subject to regular and generally drastic environmental changes across different seasons.
Engineering nanoscale optical transducers of mechanical signals in the nervous system
Communication between cells in the nervous system regulates the senses, memory, and information processing. Using electrical and biochemical sensors, such as patch clamps, voltage-sensitive dyes, and calcium-sensitive dyes, scientists have mapped with extraordinary detail the interactions of the nervous system.
Characterizing large-scale neural circuit dynamics over long-term recordings
Neural circuits can exhibit remarkable stability (e.g., when supporting long-term memory) as well as flexibility (e.g., when supporting rapid learning).
Identifying the neurobiological underpinnings of meta-learning
Meta-learning, an old concept in psychology, is the ability of humans to improve the way they learn with experience. Our previous experience of learning a skill makes us better at learning another, related skill. For instance, an athlete will learn a new sport faster than someone without the same level of experience in similar learning tasks.
Reprogramming organismal lifespan through modulation of neuropeptidergic circuits
Aging is the number one risk factor for debilitating diseases such as neurodegeneration. Can manipulation of neurons in the brain alter the body’s physiological state to extend lifespan? Neuropeptides are key modulators of short-term homeostasis such as feeding, temperature, and sleep.
Targeting DNA repair for neuroinflammation in stroke
The wearable ENG: A dizzy attack event monitor
PTS glove passive tactile stimulation for stroke rehab - Renewal
This team is developing wearable stimulation devices to improve limb function after stroke. The technology includes a tactile stimulation method, and the wireless, lightweight, and low-cost wearable computing devices to apply this stimulation.
CPStim: Optimized non-invasive brain stimulation for chronic pain
Deep learning for automated seizure localization
How do Schwann cells sort and myelinate axons in the developing peripheral nervous system?
Schwann cells (SCs) sort and myelinate peripheral axons, and impairments in either process can cause long-term disability. There are no therapeutic strategies for targeting SC dysfunction, underscoring the need to investigate mechanisms of sorting and myelination. Both processes require highly motile SC cytoplasmic protrusions, but the basis of this motility is unclear.
Magnetic Resonance Imaging of Epileptogenesis
Absence epilepsy is a form of pediatric epilepsy which causes seizures with brief lapses in awareness. Electron microscopy results in a murine model of absence epilepsy support the hypothesis that maladaptive myelination plays a role in disease progression.
Neuronal mechanism underlying spatial navigation in cephalopods
Cephalopods, including the cuttlefish, octopus, and squid, possess one of the most advanced nervous systems among invertebrates. With their advanced nervous systems, cephalopods are able to perform sophisticated behaviors such as navigating in open water to search for food. Yet how their nervous systems accomplish spatial navigation remains completely unknown.