Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Deep brain microstimulation for memory recovery

Yi Lui's project aims to use deep brain microstimulation (DBMS), which causes even less brain damage and has higher spatial resolution than DBS, for memory recovery.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Synaptic rules and circuit architectures for learning from feedback

Dr. Brandon Jay Bhasin will use engineering principles from modern control theory, experimental neuroscience and computational neuroscience to significantly advance understanding of how feedback driven plasticity in a tractable neural circuit is orchestrated across multiple synaptic sites and over various timescales so that circuit dynamics are changed to improve performance.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neurodevelopment Initiative

Investigating how the brain develops from infancy to adulthood across species, focusing on how the interplay between structural development, functional development, experience and affect brain computations and ultimately behavior.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Stanford Brain Organogenesis Program (Phase 1)

Developing brain organoids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neuro-omics Initiative (Phase 1)

Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Instrumenting the nervous system at single-cell resolution

Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Investigating the evolution of vertebrate pair bonding mechanisms

By performing a molecular and neural network analysis across behaviorally divergent pair bonding species, Dr. Jessica Nowicki will use the power of comparative analysis to reveal core mechanisms that regulate pair bonding.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Forces driving myelin wrapping In oligodendrocytes

Dr. Miguel Garcia believes that identifying the mechanism of myelin wrapping is important in understanding neural development and is a critical first step towards creating much needed therapeutic approaches to stimulate remyelination in patients with demyelinating diseases.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2019
Weak supervision in medical multi-modal time series

The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.