Funded Projects

Funded research
Wu Tsai Neurosciences Institute
Optogenetic screening of the gut-brain axis via an internal light source

The gut-brain axis is implicated in many essential physiological and psychological functions, ranging from feeding, emotion, motivation, to memory. As a critical component of the gut-brain axis, vagal sensory neurons exhibit distinct projection patterns to target specific visceral organs.

Funded research
Wu Tsai Neurosciences Institute
Structural analysis of chloride channel CLC-2

Membrane transport proteins are essential for life. They transport essential nutrients and minerals across the membrane barrier that surrounds each cell in the human body. This transport is necessary for every living process – from eating and breathing to learning and doing daily work.

Funded research
Wu Tsai Neurosciences Institute
Extended Reality(XR) enhanced behavioral activation for treatment of Major Depressive Disorder

This team has created an extended reality–enhanced implementation of "behavioral activation," one of the most effective forms of evidence-based psychotherapy for major depression. They will use the Neuroscience:Translate award to test the efficacy and scalability of this approach and accelerate the development of extended reality technologies to improve treatment options for major depression.

Funded research
Wu Tsai Neurosciences Institute
Remote reliable measurements of movement using bluetooth enabled engineered keyboard for diagnosis of neurological diseases - Renewal

This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.

Funded research
Wu Tsai Neurosciences Institute
Leveraging screenomics to identify mental illness: Detecting bipolar disorder through computational analysis of smartphone screen data

Mental illnesses like bipolar disorder affect millions of people around the world, but early symptoms are often difficult to detect. Working across the disciplines of clinical psychology, communication, and computer science, my research will develop a novel computational tool to identify signals of mania and depression in real-time.

Funded research
Wu Tsai Neurosciences Institute
Mechanistic insights into glycerophospholipid metabolism in the lysosome

Phospholipid dysregulation is implicated in the pathogenesis of lysosomal storage disorders (LSDs). We found that glycerophosphodiesters (GPDs) accumulate in lysosomes derived from Batten disease models, a life-limiting LSD whose pathological mechanism remains elusive. GPDs are the degradation products of glycerophospholipid catabolism by phospholipases.

Funded research
Knight Initiative for Brain Resilience
Manipulating inflammation in the aging brain to promote brain resilience

Inflammation is a hallmark of brain aging, yet the source of inflammation in the old brain — and how to eliminate it — is unknown. This team aims to provide insight on how inflammation affects the aging brain that could potentially lead to the generation of new therapies to promote brain resilience.

Funded research
Knight Initiative for Brain Resilience
Mutant microglia and resilience to Alzheimer’s disease

This project aims to identify how mutant peripheral immune cells that invade the brain might actually reduce Alzheimer’s disease risk. The research will explore how to mimic these cells’ resilience-promoting effects to design new Alzheimer’s therapies.

Funded research
Knight Initiative for Brain Resilience
Predicting and promoting resilient brain aging trajectories

Using new animal models such as the African killifish, this team aims to develop approaches to predict individual brain aging trajectories early in life based on behaviors that can be modulated to promote healthy memory, executive function and processing speed as well as counter dementia.

Funded research
Knight Initiative for Brain Resilience
Resilience to Synaptic Impairments in Neurodegenerative Disorders

This team will explore the idea that neurotoxic protein aggregates seen in neurodegenerative disorders act at the synaptic connections between cells, and that resilience against these disorders may come from natural synapse-supporting factors that could be transformed into new forms of therapy.

Funded research
Knight Initiative for Brain Resilience
Mitochondrial DNA and Brain Resilience

This team proposes the first comprehensive study of how mitochondrial DNA is related to cognitive function and susceptibility to dementia in a diverse population of over 11,000 adults. The outcomes of this study will provide insight into possible racial disparities in brain health.

Funded research
Knight Initiative for Brain Resilience
Sleep circuits in neurodegenerative disease and aging

This team plans to study whether changes in neurons in the midbrain that regulate sleep, wakefulness, and immunity could contribute to aging and neurodegeneration. If successful, this information could rescue deficits in sleep and restore a normal immune profile.

Funded research
Knight Initiative for Brain Resilience
Unlocking brain resilience with HDAC inhibition

This team aims to define a network of genes that contribute to stress resistance in neurons and identify how it could be activated to enhance brain resilience and protect against neurodegenerative disease.