Maryam Shanechi - Dynamical modeling, decoding, and control of multiscale brain networks: from motor to mood

Event Details:

Monday, October 17, 2022
This Event Has Passed
Time
4:00pm to 5:30pm PDT
Event Sponsor
Wu Tsai Neurosciences Institute
Add to calendar:
Image

Dynamical modeling, decoding, and control of multiscale brain networks: from motor to mood

Abstract 

A major challenge in engineering and neuroscience is to model, decode, and control the activity of large populations of neurons that underlie our brain’s functions and dysfunctions. I will present our work toward addressing this challenge, which can help restore lost motor and emotional function in millions of patients with disabling neurological and neuropsychiatric disorders such as major depression. I first discuss a multiscale dynamical modeling framework that can decode mood variations from multisite human brain activity and identify brain regions that are most predictive of mood. I then develop a system identification approach that can predict multiregional brain network dynamics (output) in response to time-varying electrical stimulation (input) to enable closed-loop control of neural activity. Further, I extend our modeling framework to dissociate and uncover behaviorally relevant neural dynamics that can otherwise be missed, such as those during naturalistic movements. I also present how these models can incorporate multiple spatiotemporal scales of brain activity simultaneously. Finally, I show how we can capture and study nonlinearities in behaviorally relevant neural dynamics using recurrent neural networks (RNNs) and novel learning algorithms. These dynamical models, decoders, and controllers can enable a new generation of brain-machine interfaces for personalized therapy in brain disorders.

Maryam Shanechi

University of Southern California

(Visit lab website)

Maryam M. Shanechi is Associate Professor and Viterbi Early Career Chair in Electrical and Computer Engineering (ECE) and a member of the Neuroscience Graduate Program and Departments of Computer Science and Biomedical Engineering at the University of Southern California (USC). She is also the founder and director of a newly established USC Center for Neurotechnology. Prior to joining USC, she was Assistant Professor at Cornell University’s ECE department in 2014. She received her B.A.Sc. degree in Engineering Science from the University of Toronto, her S.M. and Ph.D. degrees in Electrical Engineering and Computer Science from MIT, and her postdoctoral training in Neural Engineering at Harvard Medical School and UC Berkeley. Her research focuses on developing closed-loop neurotechnology and studying the brain through decoding and control of neural dynamics. She is the recipient of several awards including the NIH Director’s New Innovator Award, NSF CAREER Award, ONR Young Investigator Award, ASEE’s Curtis W. McGraw Research Award, MIT Technology Review’s top 35 Innovators Under 35, Popular Science Brilliant 10, Science News SN10, One Mind Rising Star Award, and a DoD Multidisciplinary University Research Initiative (MURI) Award.

About the Wu Tsai Neuro MBCT Seminar Series  The Stanford Center for Mind, Brain, Computation and Technology Seminars (MBCT) explores ways in which computational and technical approaches are being used to advance the frontiers of neuroscience. It features speakers from other institutions, Stanford faculty and senior training program trainees. 

Sign up to learn about all our upcoming events