Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Investigating severe traumatic brain injury using a novel human CSF cell-free mRNA gene panel
This team aims to be the first to study the cellular and molecular impact of traumatic brain injury by studying genetic material in human cerebrospinal fluid. This will help clinicians and researchers ID markers of brain resilience after injury, and ultimately improve treatment for severe TBI.
Neuronal and genetic imprints of male mating experience
We understand a lot about how the brain gets rewired when learning a new skill by repetitive practice, such as hitting a curveball. However, how learning and experience alter the innate behaviors that we are born with is poorly understood.
Rejuvenating sleep to enhance brain resilience with age
Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).
Restoring vision with epiretinal prostheses
Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.
Improving BCI generalizability with multi-task modeling and autocalibration
Brain-computer interfaces (BCIs) are systems that enable using neural activity to control and interact with external devices. For people who lose the ability to move or speak due to injury or disease, BCIs provide a potential avenue to restore this loss of function.
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors
It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.
Microglia-Mediated Astrocyte Activation in Chronic Pain
While acute pain is an important biological signal in response to injured tissue, chronic pain occurs when the pain signaling outlasts the initial injury and has deleterious effects on health and quality of life. Chronic pain represents an enormous public health burden with few therapeutic options.
Elucidating the role of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)
With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).
Neuron-glia interactions in regulating protein aggregation in human cell models.
There is one characteristic of all neurodegenerative diseases: the accumulation and aggregation of abnormal proteins in the patient’s brain. These aggregations are thought to induce neuronal cell death and brain degeneration.
The origin of neurodegeneration: insight from a unique colonial chordate
With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).
Determining the role of circadian transcriptional control in myelin-forming precursors in neurodegeneration
The causes of neurodegenerative disorders like multiple sclerosis or Alzheimer’s disease are incompletely understood, hindering our ability to gain precise diagnoses and design effective therapeutics. Understanding how the circadian rhythms regulate myelin-forming precursors will impart unique insights into normal and aberrant myelination and will have a positive impact on developing therapeutic strategies to restructure myelin.
High-Fidelity Artificial Retina for Vision Restoration
This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.
Programmable RNA editing in Parkinson’s disease therapy
This team will use their Neuroscience:Translate award to employ a novel therapeutic technique to correct pathogenic mutations causing Parkinson’s disease.
At-home Stroke Rehabilitation System based on Augmented Reality and Brain Computer Interface Paradigm
This team aims to revolutionize future stroke treatment both in clinics and at home by combining a brain-computer interface and augmented reality (AR) into a single rehabilitation platform.
Silent Speech Decoding Using Flexible Electronics and Artificial Intelligence
This team aims to advance augmentative and alternative communication technology for people with communication disorders and enable new forms of human-computer interaction by combining novel materials science with modern machine learning.
The Synaptic Organization of Dendrites
Tracking Parkinson’s Disease with Transformer Models of Everyday Looking Behaviors
New Thrombectomy Device for Endovascular Neurosurgery
This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.
Development of an Ultrasound Neuromodulation Therapy to Treat Rheumatoid Arthritis
This team will use their Neuroscience:Translate award to develop the first wearable ultrasound (US) device for the treatment of inflammatory diseases, such as Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease.
Structural and mechanistic analysis of the protein-protein interface between ABCA1 and ApoE as a potential therapeutic target for Alzheimer’s Disease
We propose a new line of research whose goal is to examine the druggability of a protein-protein interface involving ApoE, an apolipoprotein whose gene variants represent the strongest genetic risk factor for AD.
Dissecting mechanisms of gut-brain communication in Parkinson’s Disease
People with Parkinson’s Disease (PD) have different types of bacteria in their guts compared to people without neurological diseases. We will study which gut bacteria for people with PD to gain a better understanding of how gut bacteria contribute to inflammation in the body and in the brain or people with this condition.
Novel ketone-derived anticonvulsant agents for the treatment of childhood refractory epilepsy
We propose to apply mass spectrometry techniques to measure BHB-Phe and other KD metabolites in children undergoing KD for refractory epilepsy at Stanford. Further, in a mouse model of refractory genetic epilepsy, we will compare targeted BHB-Phe treatment to full KD treatment using transcriptomics, EEG assessment of seizures and cognitive testing.
Life-long, minimally invasive, and multiplex transcriptional profiling of the cerebellum
Why do all our brains mature and age in different ways, leading to different cognitive and behavioral outcomes? We envision a novel method that “copies” the information from the RNAs made by the neurons to sensor RNAs we artificially introduce into live animals.
Use of gut-brain electrophysiology to study interoception in eating disorders
In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.