Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Examining the role of glia signaling in neuronal excitability
Understanding how glia regulate the expression and/or post-translational modification of sodium ion channels may lead to the identification of new pharmaceutical targets for the treatment of pain.
Kinetic determinants of GPCR signaling: from ultra-fast to diffusion-limited
G protein-coupled receptors (GPCRs) are proteins that exist within the cell membrane and act to transfer the information encoded within neurotransmitters and drugs into cell responses. GPCRs exist throughout the body in several systems including the nervous system.
Neurodevelopment Initiative
Investigating how the brain develops from infancy to adulthood across species, focusing on how the interplay between structural development, functional development, experience and affect brain computations and ultimately behavior.
Neuro-omics Initiative (Phase 1)
Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.
NeuroPlant Initiative
The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.
Novel haptic interfaces for studying human perception in virtual environments
Real-time biosensors for measuring multiple neuromodulators
The goal of the project is to create a transformative sensor technology to measure complex forms of chemical communication in the living brain, in real time.
Stanford Brain Organogenesis Program (Phase 1)
Developing brain organoids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.
Sustained release of growth factors from bioengineered synthetic "cells" for treating spinal cord injury
Spinal cord injury (SCI) is a debilitating condition that affects young adults between the ages of 16 and 30, which leads to lifelong medical and financial burdens. SCI still results in a decreased quality-of-life and lower life expectancy for patients. This is due in part to the lack of a regenerative-based therapeutic approach to treating SCI in the clinic.
Synaptic rules and circuit architectures for learning from feedback
Dr. Brandon Jay Bhasin will use engineering principles from modern control theory, experimental neuroscience and computational neuroscience to significantly advance understanding of how feedback driven plasticity in a tractable neural circuit is orchestrated across multiple synaptic sites and over various timescales so that circuit dynamics are changed to improve performance.
Transcriptomic analysis of neural circuits activated during encoding of long-term memory
Our ability to remember makes us human, and is essential for acquiring new skills and integrating previous experiences into future decision-making. While it is known that long-term memory (LTM) formation requires new gene expression, we lack a detailed and comprehensive understanding of which genes must be expressed to encode memories, and how these genes change over time during the consolidation of memories.
A novel sigma-1 receptor PET radioligand as a probe of ketamine’s rapid therapeutic action in disorders of human brain and behavior: Pilot study
Biologically plausible neural algorithms for learning structured sequences
Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.
Combining electrical and optical measurements on voltage-gated sodium channel toxins
Ion channels in the membranes of neuronal cells are the key regulators of neuronal signaling. An ion channel works as a gate that can open and close to allow specific molecules to enter or leave the cell. One important type of ion channels are voltage-gated sodium channels (NaVs), which are essential for many processes in our brain.
Developing a dopamine and neural systems model of anhedonia
More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.
Enabling faster and more responsive voltage imaging through computational biophysics
Engineering versatile deep neural networks that model cortical flexibility
In the course of everyday functioning, animals (including humans) are constantly faced with real-world environments in which they are required to shift unpredictably between multiple, sometimes unfamiliar, tasks. But how brains support this rapid adaptation of decision making schema, and how they allocate resources towards learning novel tasks is largely unknown both neuroscientifically and algorithmically.
High-speed force probes for deconstructing the biophysics of mechanotransduction
The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders.
High-speed nanomechanical probing of auditory mechano-sensitive cells
Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.
Identification of sex hormone interacting proteins
Improve reproducibility and transparency in the field of neuroimaging by applying nonparametricstatistical methods and writing R packages.
Brain data analyses involves many steps and every step is prone to errors and uncertainties. Ignoring uncertainties can potentially leading to overconfident conclusions. To improve reproducibility it is important to propagate errors throughout the analysis.
In vivo analysis of cAMP dynamics in developing glial cells
Cyclic adenosine monophosphate (cAMP) is an important intracellular messenger that plays a critical role in the development of the central and peripheral nervous system. However, the mechanisms of action of cAMP in the nervous system development are poorly understood and there are currently no suitable methods to visualize cAMP in the cells of living animals.
Mechanisms of plasma proteins that rejuvenate the aged brain
One in three people will develop Alzheimer’s disease or another dementia during their lifetime, but effective treatment still does not exist despite intense efforts. Recently, blood from young mice has been found to rejuvenate several tissues of old mice, including the brain.
Neural mechanisms of learning multiple motor skills and implications for motor rehabilitation
A hallmark of the motor system is its ability to execute different skilled movements as the situation warrants, thanks to the flexibility of motor learning. Despite many behavioral studies on motor learning, the neural mechanisms of motor memory formation and modification remain unclear.