Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Examining the role of glia signaling in neuronal excitability

Understanding how glia regulate the expression and/or post-translational modification of sodium ion channels may lead to the identification of new pharmaceutical targets for the treatment of pain.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Kinetic determinants of GPCR signaling: from ultra-fast to diffusion-limited

G protein-coupled receptors (GPCRs) are proteins that exist within the cell membrane and act to transfer the information encoded within neurotransmitters and drugs into cell responses. GPCRs exist throughout the body in several systems including the nervous system.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neurodevelopment Initiative

Investigating how the brain develops from infancy to adulthood across species, focusing on how the interplay between structural development, functional development, experience and affect brain computations and ultimately behavior.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neuro-omics Initiative (Phase 1)

Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Stanford Brain Organogenesis Program (Phase 1)

Developing brain organoids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Sustained release of growth factors from bioengineered synthetic "cells" for treating spinal cord injury

Spinal cord injury (SCI) is a debilitating condition that affects young adults between the ages of 16 and 30, which leads to lifelong medical and financial burdens. SCI still results in a decreased quality-of-life and lower life expectancy for patients. This is due in part to the lack of a regenerative-based therapeutic approach to treating SCI in the clinic.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Synaptic rules and circuit architectures for learning from feedback

Dr. Brandon Jay Bhasin will use engineering principles from modern control theory, experimental neuroscience and computational neuroscience to significantly advance understanding of how feedback driven plasticity in a tractable neural circuit is orchestrated across multiple synaptic sites and over various timescales so that circuit dynamics are changed to improve performance.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Transcriptomic analysis of neural circuits activated during encoding of long-term memory

Our ability to remember makes us human, and is essential for acquiring new skills and integrating previous experiences into future decision-making. While it is known that long-term memory (LTM) formation requires new gene expression, we lack a detailed and comprehensive understanding of which genes must be expressed to encode memories, and how these genes change over time during the consolidation of memories.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Biologically plausible neural algorithms for learning structured sequences

Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Combining electrical and optical measurements on voltage-gated sodium channel toxins

Ion channels in the membranes of neuronal cells are the key regulators of neuronal signaling. An ion channel works as a gate that can open and close to allow specific molecules to enter or leave the cell. One important type of ion channels are voltage-gated sodium channels (NaVs), which are essential for many processes in our brain.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Developing a dopamine and neural systems model of anhedonia

    More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2017
Engineering versatile deep neural networks that model cortical flexibility

In the course of everyday functioning, animals (including humans) are constantly faced with real-world environments in which they are required to shift unpredictably between multiple, sometimes unfamiliar, tasks. But how brains support this rapid adaptation of decision making schema, and how they allocate resources towards learning novel tasks is largely unknown both neuroscientifically and algorithmically.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed force probes for deconstructing the biophysics of mechanotransduction

The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders. 

 

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed nanomechanical probing of auditory mechano-sensitive cells

Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.

Wu Tsai Neurosciences Institute
Seed Grant
2017
Identification of sex hormone interacting proteins
We are interested in elucidating the multiple roles that sex hormones play in development of the nervous system and in regulating brain functions that influence gender identity, puberty, and reproduction.
Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
In vivo analysis of cAMP dynamics in developing glial cells

Cyclic adenosine monophosphate (cAMP) is an important intracellular messenger that plays a critical role in the development of the central and peripheral nervous system. However, the mechanisms of action of cAMP in the nervous system development are poorly understood and there are currently no suitable methods to visualize cAMP in the cells of living animals.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Mechanisms of plasma proteins that rejuvenate the aged brain

One in three people will develop Alzheimer’s disease or another dementia during their lifetime, but effective treatment still does not exist despite intense efforts. Recently, blood from young mice has been found to rejuvenate several tissues of old mice, including the brain.