Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Real-time biosensors for measuring multiple neuromodulators
The goal of the project is to create a transformative sensor technology to measure complex forms of chemical communication in the living brain, in real time.
Instrumenting the nervous system at single-cell resolution
Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.
Learning to see the physical world with biologically-inspired recurrent neural networks
Dr. Daniel Bear propose to augment state-of-the-art neural networks with two biologically-inspired properties: the ability to represent the physical world as it changes over time and the ability to learn from self-created signals rather than explicit human instruction.
Investigating the evolution of vertebrate pair bonding mechanisms
By performing a molecular and neural network analysis across behaviorally divergent pair bonding species, Dr. Jessica Nowicki will use the power of comparative analysis to reveal core mechanisms that regulate pair bonding.
Forces driving myelin wrapping In oligodendrocytes
Dr. Miguel Garcia believes that identifying the mechanism of myelin wrapping is important in understanding neural development and is a critical first step towards creating much needed therapeutic approaches to stimulate remyelination in patients with demyelinating diseases.
Accelerating maturation of 3D human brain organoid models to study human aging mechanisms.
Dr. Iram will use brain intrinsic and systemic regulators of aging, in an attempt to accelerate maturation of human-derived brain organoids. This has the potential to produce the first ever aged human brain 3D cultures and identify factors which accelerate brain aging.
The rehab glove: Passive tactile stimulation for stroke rehabilitation
Project's stimulation method may provide a powerful tool to reduce disability after a stroke, and the wearable form factor allows users to receive intensive therapy during their normal daily routine
Multi-modal deep learning for automated seizure localization
Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.
NeuroRoots, brain/computer interface solution for paralysis
Clinical translation of protein-engineered, matrix-mimetic nerve guidance conduits for peripheral nerve injury
Developing a protein-engineered nerve implant that mimics the biochemical and mechanical cues of native tissue in order to enhance the potential for neural regeneration following injury.
A mobile game for domain adaptation and deep learning in autism healthcare (Seed Grant)
Modelling the Pupil Light Reflex for Non-Image Forming Vision
Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.
Controlling schistosomiasis via CRISPR/CAS9-mediated gene drive
Schistosomiasis is a parasitic disease second only to malaria in its human health and economic impact on tropical nations.
Weak supervision in medical multi-modal time series
The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.
A spatiotemporally-resolved circuit model of the physiologic and behavioral effects of subanesthetic ketamine activity in the limbic system
Developing a platform of biocompatible nanoparticles that uncage a drug payload upon ultrasound application.
A multi-rank statistical model to determine the impact of behavioral state on navigational coding by medial entorhinal cortex
Behavioral state—such as alertness or exhaustion—dramatically impacts how our brains function. Yet, in spite of the key role that it plays in cognition, how behavioral state influences brain function remains a central mystery in neuroscience.
Ultrasonic neural control and neuroimaging in the awake, mobile, and behaving small rodent
We propose to design a lightweight, wearable system for integrated ultrasonic drug uncaging and fUS neuroimaging to noninvasively pharmacologically modulate a brain target and then image the resultant changes in neural activity without significant motion limitations.
Sensory processing in a pre-seizure state
Genetic tools to determine circuit-specific roles of myelination
These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.
Injectable photovoltaics for a wireless, gliosis-free neural stimulation interface
We believe our research has the potential of generating transformative results for both neuroscience research and neurological applications, also offering strategies to manipulate key intracellular pathways to prevent gliosis in therapeutic neural implants.
Investigating the role of a human-specific repeat element in neuropsychiatric disease risk and cerebellar function
Quantifying auditory-vocal affect in human social communication
This proposal brings together faculty with this diverse expertise to develop the first gold standard test of auditory-vocal affect. Once developed, validated, and normed, we will deploy this test in the clinical context of autism to quantify impairments and direct neurobiological investigation.
How animals keep time annually: molecular mechanisms of the seasonal rhythm
Adaptation to environmental variations is vital for animal survival. While short-lived organisms face unpredictable environmental fluctuations, long-lived animals are subject to regular and generally drastic environmental changes across different seasons.
Engineering nanoscale optical transducers of mechanical signals in the nervous system
Communication between cells in the nervous system regulates the senses, memory, and information processing. Using electrical and biochemical sensors, such as patch clamps, voltage-sensitive dyes, and calcium-sensitive dyes, scientists have mapped with extraordinary detail the interactions of the nervous system.