Neurosciences Postdoctoral Scholar Awards

Image
Postdoc scholars researching in a lab

Our postdoctoral scholars program provides research support and a community of mentors and peers to extraordinary Stanford postdocs advancing our understanding of the mind and brain in health and disease.

The Wu Tsai Neurosciences Institute's Postdoctoral Scholar Awards support innovative, collaborative and creative postdoctoral researchers from across Stanford who are pursuing novel, multi-disciplinary approaches to understanding the workings of the mind and brain. In addition to receiving research funding, scholars meet regularly for workshops, journal clubs and other activities that allow them to learn from one another’s varied research and personal backgrounds and establish community and collaborations. These Interdisciplinary Postdocs and Brain Resilience Scholars will advance our knowledge of brain health and aging.
 

Program Tracks

Image
Wu Tsai Neuro brain logo

Interdisciplinary Postdoctoral Scholar Award

Since 2015, the Wu Tsai Neuro's Interdisciplinary Scholars track has supported innovative young researchers with backgrounds in basic and clinical neurosciences, biomedical sciences, physical sciences, social sciences, engineering, education, law, business and humanities who are engaged in cutting edge interdisciplinary research in the neurosciences, broadly defined.

Image
Knight Initiative for Brain Resilience Brain logo

Brain Resilience Postdoctoral Scholar Award

Since 2023, the Brain Resilience Postdoctoral Scholars award of the Knight Initiative for Brain Resilience supports trainees generating paradigm-shifting insights on the mechanisms of neurodegeneration and how to maintain brain resilience into old age.

Closed

Application

This program is open to current Stanford postdocs. Our next postdoc applications will open in Winter Quarter 2024.

Program sponsor
Wu Tsai Neurosciences Institute & Knight Initiative for Brain Resilience

Funded Interdisciplinary Postdoctoral Scholar projects

Funded research
Wu Tsai Neurosciences Institute
Interpretable machine learning to decipher gene regulation in brain development and disruption in disease

Brain development is a complex process where cells must self-renew and differentiate at the right place and right time. Gene regulation during development involves sequences in the genome which affect the expression of genes locally, and transcription factors, proteins that bind these sequences and activate genes throughout the genome. At active regulatory sequences and genes, DNA is accessible to these proteins, while inactive DNA is tightly compacted.

Funded research
Wu Tsai Neurosciences Institute
Interrogating the effects of serotonin and dopamine on neural activity in the nucleus accumbens during aggression

Studying the brain circuits involved in aggression will help us tackle big social issues like hate crimes, antisocial
behavior, and violence. Imagine if we could better understand why some people act aggressively towards
others—we could use this knowledge to protect people from harm and create a world where everyone feels safe. Chemicals in our brain, such as dopamine and serotonin, affect neural activity to modulate behavior. When we experience something rewarding, like having good food or meeting friends, dopamine is released in the brain.

Funded research
Wu Tsai Neurosciences Institute
How do early life experiences shape the neural underpinnings of caregiver olfactory recognition?

The ability of an infant to distinguish caregivers from strangers is fundamental for survival early in life. Across
many taxa, newborns use olfactory cues to recognize caregivers. Caregiver odors induce proximity-seeking
behavior and alleviate stress in neonatal mammals, including humans. Since all altricial animals rely on parental
care for survival and children with developmental disorders (e.g., fragile X syndrome and autism) often have
deficits in the olfactory system, it is essential to understand the mechanisms for linking caregiver odors with
affiliative behavior.

Funded research
Wu Tsai Neurosciences Institute
Neuronal innervation dynamics in uterine function and maternal age-associated miscarriage

This proposal addresses three interconnected, yet independent aims focused on the neural mechanisms implicated in age-associated miscarriages. First, the proposal aims to construct a comprehensive neuro-uterine atlas delineating neuronal subtypes innervating the uterus, elucidating how innervation patterns and transcriptome profiles evolve with age. Second, the proposal aims to implement cutting-edge tissue clearing techniques on extracted uteri to discern alterations in uterine innervation patterns and signaling across the rodent estrous cycle and the first trimester of pregnancy.

Funded Brain Resilience Postdoctoral Scholar projects

Funded research
Knight Initiative for Brain Resilience
Sleep and neuronal energy management in neurodegeneration

Sleep is critical for brain function in many animals, and chronic disruptions in sleep patterns are strongly linked to the emergence of neurodegenerative diseases like Alzheimer’s and Parkinson’s. When animals sleep, neural
activity and brain metabolism change dramatically; however, we do not know what the molecular functions of
sleep are in the brain, nor do we know how these processes are linked to brain health. 

Funded research
Knight Initiative for Brain Resilience
Neural mechanisms of episodic memory resilience in longitudinal aging brains

Maintaining the health and function of the aging brain is crucial to improving the quality of older people’s lives and reducing societal burden. Aging is often accompanied by a decline in memory for life events (episodic memory), especially in those at risk for Alzheimer’s disease (AD). Yet some at-risk individual’s manage to maintain memory function, which raises important questions about the brain mechanisms that underly memory resilience.

Funded research
Knight Initiative for Brain Resilience
Evaluating the immunomodulatory role of circular RNAs in microglia

Neuroinflammation is common in several neurodegenerative diseases, with brain immune cells, specifically
microglia, being a main driver of the inflammatory process. Understanding what triggers microglial activation and its pathways will lead to a better knowledge of inflammatory mechanisms involved in neurodegenerative disease pathology. Circular RNAs (circRNAs) have been studied extensively in the peripheral immune system due to their ability to induce innate immune responses. 

Funded research
Knight Initiative for Brain Resilience
TREM1 in peripheral myeloid cells exacerbates cognitive decline in aging and Alzheimer's disease

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States and there is a tremendous need for improved therapeutic strategies to treat this prevalent neurodegenerative disease. A devastating symptom of AD is progressive memory loss; this particular disease feature has proven difficult to treat. However, research has begun to unravel novel drivers of AD, including the important role the body’s immune system plays in promoting memory loss. 

Our Model

This program awards two years of fellowship funding and is pleased to provide parental leave. Postdoctoral scholars also receive $5,000 of discretionary research funds annually.

Mentorship

The program provides scientific and career-growth opportunities and guidance under the leadership of program co-directors and faculty mentors Professors Miriam Goodman and Liqun Luo. Scholars meet monthly with their cohort and program faculty mentors to share ideas and discuss approaches to scientific and career challenges, visit each other’s labs to learn about different research techniques and areas of study, and practice communicating their research to scientific and general audiences.


In addition, Brain Resilience Postdoctoral Scholars attend events and seminars hosted by the Knight Initiative for Brain Resilience, and are stewarded by Knight Initiative Associate Director Natasha Hussain and faculty mentor Elizabeth Mormino to learn from one another and build community around the topic of neurodegeneration and brain resilience.

Diversity

The Wu Tsai Neurosciences Institute Postdoctoral program brings together cohorts of postdocs representing the broad range of demographic, experiential and scientific diversity. Women and postdocs from groups underrepresented in the neurosciences are strongly encouraged to apply.

Learn more

Image

Application and Eligibility Details

Carefully review the detailed information below if you are interested in applying to the Interdisciplinary Postdoctoral Scholars track or the Brain Resilience Postdoctoral Scholars track of the program.

Learn more
Image

Terms and Conditions

Learn more about the terms and conditions of this program. 

Learn more