Electronic, optical, and magnetic tools to study the nervous system - Polina Anikeeva

Event Details:

Monday, February 26, 2018
This Event Has Passed
Time
10:00am to 10:00am PST
Location
Contacts
Daisy Ramirez <daisyramirez1@stanford.edu>
Event Sponsor
Stanford Neurosciences Institute
Add to calendar:
Image

Electronic, optical, and magnetic tools to study the nervous system

Polina Anikeeva

Materials Science and Engineering, Massachusetts Institute of Technology

Abstract

To understand the mechanisms underlying the function and dynamics of the nervous system it is essential to develop tools capable of recording and modulating a diversity of signals employed by neurons and glia. In addition to matching the signaling complexity of the nervous system, these tools must match the mechanical and chemical properties of the neural tissue to avoid foreign body response and functional perturbation to local circuits. Our group relies on materials design to address these challenges. By leveraging fiber-drawing methods inspired by telecommunications and textile industries, we create flexible and stretchable multifunctional probes suitable for recording and stimulation of neural activity as well as delivery of drugs and genetic information into the brain and spinal cord. We use these tools to probe brain circuits involved in control of motor functions, anxiety, and fear and to promote recovery following spinal cord and peripheral nerve injury. In addition to polymer-based fibers, we develop a broad range of magnetic nanotransducers that can deliver thermal, chemical, and mechanical stimuli to neurons when exposed to externally applied magnetic fields. Magnetic nanoparticles can undergo hysteresis and dissipate heat in alternating magnetic fields. This local temperature increase can be used to directly stimulate activity of heat-sensitive neurons or to trigger release of pharmacological compounds and designer drugs from thermally responsive carriers. Similarly, magnetic nanomaterials with large magnetic moments can be employed to deliver torques when exposed to slow-varying magnetic fields. Since biological tissues exhibit negligible magnetic permeability and low conductivity, magnetic fields can penetrate deep into the body with no attenuation allowing us to apply the nanomagnetic transducers to remotely control deep brain circuits associated with reward and motivation as well as adrenal circuits involved in regulation of corticosterone and (nor)epinephrine release

Bio

Polina Anikeeva received her BS in Physics from St. Petersburg State Polytechnic University in 2003. After graduation she spent a year at Los Alamos National Lab where she worked on developing photovoltaic cells based on quantum dots. She then enrolled in a PhD program in Materials Science at MIT and graduated in January 2009 with her thesis dedicated to the design of light emitting devices based on organic materials and nanoparticles. She completed her postdoctoral training at Stanford University, where she created devices for optical stimulation and electrical recording from neural circuits. Polina joined the faculty of the Department of Materials Science and Engineering at MIT in July 2011, where she is now a Class of 1942 career development associate professor. Her lab focuses on the development of flexible and minimally invasive materials and devices for neural recording, stimulation, and repair. Polina is also a recipient of NSF CAREER Award, DARPA Young Faculty Award, and the TR35 among others.