Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2016
A principled investigation into the heterogeneous coding properties of medial entorhinal cortex that support accurate spatial navigation

Navigation through an environment to a remembered location is a critical skill we use every day. How does our brain accomplish such a task? Over the last few decades, several lines of evidence have suggested that a brain region called medial entorhinal cortex (MEC) supports navigation by encoding information our location and movement within an environment.

Wu Tsai Neurosciences Institute
Funded research
2016
Interoception: The sense of the physiological condition of the body

To understand how sensory information and physiological state integrate to drive decisions and behaviors. Dr. Xiaoke Chen's lab is focusing now on interoception, which is the sense of the physiological condition of the body. This include our abilities to feel hungry or satiated, to sense heightened blood pressure and heart rate during stress, and to discriminate different types of pain.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2016
Investigation of synapse formation by novel nanoscale imaging techniques

Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2016
Understanding why neurons die in disease

Many neurological diseases feature the death of neurons, but the mechanisms that mediate cell death in these disorders are unknown. Astrogliosis, the response of a cell-type called “astrocytes” to injury, is common to most diseases of the central nervous system (CNS), and recent studies in our lab suggest that some reactive astrocytes may release a protein that is potently toxic to neurons.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2015
Determining the microstructural basis of diffusion MRI

The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2015
Enabling cell-based therapy of spinal cord injury through injectable hydrogels

Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2015
Genomic analysis of the gene regulatory landscape of the developing neocortex

This research seeks to understand how our genes encode the instructions for neurons in the neocortex to properly arise during normal brain development. This knowledge will allow scientists to understand how genetic mutations perturb development leading to human disease.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Massively parallel microwire arrays for deep brain stimulation
We will engineer next generation bundled microwires deep brain stimulation using microwires that are thinner than human hair. We will use a small LED display to deliver patterned stimulation by ‘playing a video’ on the display chip, where each pixel is connected to a microwire.
Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
NeuroChoice: Optimizing Choice - from neuroscience to public policy
This proposal brings together faculty from diverse disciplines to deepen our understanding of the neural mechanisms supporting choice, and extend this knowledge to optimize choices related to addiction and investment. This consilience will require new conceptual and experimental tools designed to bridge historically distant fields of inquiry. Our team aims to transform the scientific understanding of choice, and to translate relevant knowledge to promote more optimal decision-making.
Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
NeuroVision Initiative

The goal is to forge an inter-disciplinary collaboration between physicists, biologists, chemists, and translational medical scientists by inventing new ways of visualizing the brain, from individual molecules to neuronal circuits to entire brain regions, from a normally functioning neuron to a diseased brain.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2015
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve

Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
Stanford Brain Rejuvenation Project

Creating a center for neurodegeneration research focusing on brain maintenance and regeneration, and the role of the immune system in these processes.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
Stroke Collaborative Action Network

Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.