Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2019
Instrumenting the nervous system at single-cell resolution

Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2019
Investigating the evolution of vertebrate pair bonding mechanisms

By performing a molecular and neural network analysis across behaviorally divergent pair bonding species, Dr. Jessica Nowicki will use the power of comparative analysis to reveal core mechanisms that regulate pair bonding.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2019
Learning to see the physical world with biologically-inspired recurrent neural networks

Dr. Daniel Bear propose to augment state-of-the-art neural networks with two biologically-inspired properties: the ability to represent the physical world as it changes over time and the ability to learn from self-created signals rather than explicit human instruction.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Quantifying auditory-vocal affect in human social communication

This proposal brings together faculty with this diverse expertise to develop the first gold standard test of auditory-vocal affect. Once developed, validated, and normed, we will deploy this test in the clinical context of autism to quantify impairments and direct neurobiological investigation.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Sensory processing in a pre-seizure state
This team will leverage the power of silicon probes to record from hundreds of neurons in mouse epilepsy models to understand neural correlates of the pre-seizure EEG. These results will be used to optimize a real-time seizure prediction algorithm that will be tested in human patients.
Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2019
Weak supervision in medical multi-modal time series

The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Deep brain microstimulation for memory recovery

Yi Lui's project aims to use deep brain microstimulation (DBMS), which causes even less brain damage and has higher spatial resolution than DBS, for memory recovery.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2018
Discovering new volitionally-controllable neural degrees-of-freedom for neural prostheses

A top priority for people with paralysis is reach and grasp ability. Technologies such as robotic arm prostheses or electrically stimulating paralyzed muscles can meet this need. Existing methods rely on the remaining muscles, are unintuitive and require laborious sequences of simple commands. Reading out a patient’s desired movement directly from their brain could overcome these limitations.

Wu Tsai Neurosciences Institute
Funded research
2018
Examining the role of glia signaling in neuronal excitability

Understanding how glia regulate the expression and/or post-translational modification of sodium ion channels may lead to the identification of new pharmaceutical targets for the treatment of pain.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2018
Kinetic determinants of GPCR signaling: from ultra-fast to diffusion-limited

G protein-coupled receptors (GPCRs) are proteins that exist within the cell membrane and act to transfer the information encoded within neurotransmitters and drugs into cell responses. GPCRs exist throughout the body in several systems including the nervous system.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neurodevelopment Initiative

Investigating how the brain develops from infancy to adulthood across species, focusing on how the interplay between structural development, functional development, experience and affect brain computations and ultimately behavior.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neuro-omics Initiative (Phase 1)

Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.