Skip to content Skip to navigation

Bianxiao Cui

Bianxiao Cui

Professor of Chemistry
Postdoc, Stanford University Department of Physics, Biophysics (2002)
Ph.D., University of Chicago, Physical Chemistry (2002)
M.S., University of Chicago, Chemistry (2000)
B.S., University of Science & Technology of China, Material Sci. & Eng. (1998)
(650) 725-9573
Professor Cui develops new physical and chemical approaches to study biological processes in neurons, with particular focus on long-range signal propagation in axons and its implications in neurodegenerative disease. Methods of interest include live imaging of vesicular transport, magnetic and optical manipulation of axonal traffic, single-molecule fluorescence imaging, photo-lithography, electrophysiological recordings and a microfluidic neuronal platform for studying axonal transport.

Bianxiao Cui studied materials science and engineering at the University of Science & Technology of China (B.S. 1998) before pursuing doctoral study in physical chemistry at the University of Chicago (Ph.D. 2002). In thesis work under Prof. Stuart Rice, she explored dynamic heterogeneity and phase transition in colloidal liquids. She moved to California in 2002 to perform postdoctoral research with Prof. Steven Chu on single-molecule imaging of nerve growth factor signal transduction in neurons. She joined the Stanford Department of Chemistry as Assistant Professor in 2008, and in 2015 became Associate Professor. She was recently awarded the National Science Foundation INSPIRE Award for interdisciplinary research, as well as the NSF New Innovator and CAREER Awards, among others.

Current work in the Cui Lab seeks to understand neuronal signal propagation, with three major research directions: 1) investigating axonal transport processes using optical imaging, magnetic and optical trapping, and a microfluidic platform; 2) developing vertical nanopillar-based electric and optic sensors for sensitive detection of biological functions; 3) using optogentics to investigate temporal and spatial control of intracellular signaling pathways.

Please visit the Cui Lab website to learn more.