Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Neuronal and genetic imprints of male mating experience

We understand a lot about how the brain gets rewired when learning a new skill by repetitive practice, such as hitting a curveball. However, how learning and experience alter the innate behaviors that we are born with is poorly understood.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Rejuvenating sleep to enhance brain resilience with age

Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Restoring vision with epiretinal prostheses

Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Improving BCI generalizability with multi-task modeling and autocalibration

Brain-computer interfaces (BCIs) are systems that enable using neural activity to control and interact with external devices. For people who lose the ability to move or speak due to injury or disease, BCIs provide a potential avenue to restore this loss of function.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors

It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Microglia-Mediated Astrocyte Activation in Chronic Pain

While acute pain is an important biological signal in response to injured tissue, chronic pain occurs when the pain signaling outlasts the initial injury and has deleterious effects on health and quality of life. Chronic pain represents an enormous public health burden with few therapeutic options.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Elucidating the role of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
The origin of neurodegeneration: insight from a unique colonial chordate

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Determining the role of circadian transcriptional control in myelin-forming precursors in neurodegeneration

The causes of neurodegenerative disorders like multiple sclerosis or Alzheimer’s disease are incompletely understood, hindering our ability to gain precise diagnoses and design effective therapeutics. Understanding how the circadian rhythms regulate myelin-forming precursors will impart unique insights into normal and aberrant myelination and will have a positive impact on developing therapeutic strategies to restructure myelin.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
High-Fidelity Artificial Retina for Vision Restoration

This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.

Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
The Synaptic Organization of Dendrites
This team aims to mine a microscale reconstruction of a millimeter-cube of brain tissue to uncover how dendrites decode patterns of incoming signals. The project will test hypotheses that could confer the energy efficiency of neural circuits on next generation computer chips.
Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
Tracking Parkinson’s Disease with Transformer Models of Everyday Looking Behaviors
This project aims to track cognitive decline in Parkinson’s patients by measuring and modeling how patients explore the world with their eyes. The long-term goal of this project is to set a foundation for minimally-invasive and sensitive measures for diagnosing and tracking neurodegenerative diseases.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Dissecting mechanisms of gut-brain communication in Parkinson’s Disease

People with Parkinson’s Disease (PD) have different types of bacteria in their guts compared to people without neurological diseases. We will study which gut bacteria for people with PD to gain a better understanding of how gut bacteria contribute to inflammation in the body and in the brain or people with this condition. 

Wu Tsai Neurosciences Institute
Seed Grant
2023
Novel ketone-derived anticonvulsant agents for the treatment of childhood refractory epilepsy

We propose to apply mass spectrometry techniques to measure BHB-Phe and other KD metabolites in children undergoing KD for refractory epilepsy at Stanford. Further, in a mouse model of refractory genetic epilepsy, we will compare targeted BHB-Phe treatment to full KD treatment using transcriptomics, EEG assessment of seizures and cognitive testing.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Use of gut-brain electrophysiology to study interoception in eating disorders

In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.