Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Neuronal and genetic imprints of male mating experience
We understand a lot about how the brain gets rewired when learning a new skill by repetitive practice, such as hitting a curveball. However, how learning and experience alter the innate behaviors that we are born with is poorly understood.
Neuron-glia interactions in regulating protein aggregation in human cell models.
There is one characteristic of all neurodegenerative diseases: the accumulation and aggregation of abnormal proteins in the patient’s brain. These aggregations are thought to induce neuronal cell death and brain degeneration.
New Thrombectomy Device for Endovascular Neurosurgery
This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.
Novel ketone-derived anticonvulsant agents for the treatment of childhood refractory epilepsy
We propose to apply mass spectrometry techniques to measure BHB-Phe and other KD metabolites in children undergoing KD for refractory epilepsy at Stanford. Further, in a mouse model of refractory genetic epilepsy, we will compare targeted BHB-Phe treatment to full KD treatment using transcriptomics, EEG assessment of seizures and cognitive testing.
Programmable RNA editing in Parkinson’s disease therapy
This team will use their Neuroscience:Translate award to employ a novel therapeutic technique to correct pathogenic mutations causing Parkinson’s disease.
Rejuvenating sleep to enhance brain resilience with age
Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).
Restoring vision with epiretinal prostheses
Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.
Structural and mechanistic analysis of the protein-protein interface between ABCA1 and ApoE as a potential therapeutic target for Alzheimer’s Disease
We propose a new line of research whose goal is to examine the druggability of a protein-protein interface involving ApoE, an apolipoprotein whose gene variants represent the strongest genetic risk factor for AD.
The origin of neurodegeneration: insight from a unique colonial chordate
With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors
It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.
Use of gut-brain electrophysiology to study interoception in eating disorders
In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.
Assessing the generalizability of individual brain models
Cognitive neuroscience has traditionally focused on identifying the neural basis of psychological traits or state effects across large samples of participants. Recently, researchers have pushed towards providing more precise estimates of individual functional organization to better understand both psychological constructs as well as their supporting neural mechanisms.
At-home Stroke Rehabilitation System based on Augmented Reality and Brain Computer Interface Paradigm
This team aims to revolutionize future stroke treatment both in clinics and at home by combining a brain-computer interface and augmented reality (AR) into a single rehabilitation platform.
Autism digital therapy with embedded endpoints and artificial intelligence for progress tracking and adaptive care - Renewal
Characterizing the Genetic Architecture of Neuropathology with Machine Learning
Curiosity-driven social learning and interaction in artificial agents and humans
In order to reach the level of intelligence that humans possess, artificial agents need to be able to autonomously interact with other agents and humans and build rich models of how other minds work as a result of these interactions.
Defining the Subcellular Biology of Brain Aging and Neurodegeneration
Development and validation of selective novel small molecule therapeutics for Parkinson's Disease
Development of an extracochlear neurostimulation device to restore hearing – Renewal
Sensorineural hearing loss is an increasingly prevalent condition that causes disability to over a third of US adults aged over 65. This team is developing a breakthrough device to restore high-frequency hearing that preserves residual hearing through a reversible and minimally invasive approach.
Endocannabinoid metabolism as a driver of brain aging
Extended Reality(XR) enhanced behavioral activation for treatment of Major Depressive Disorder
This team has created an extended reality–enhanced implementation of "behavioral activation," one of the most effective forms of evidence-based psychotherapy for major depression. They will use the Neuroscience:Translate award to test the efficacy and scalability of this approach and accelerate the development of extended reality technologies to improve treatment options for major depression.
From gut to brain: reprogramming peripheral macrophages at the intestinal barrier to prevent age-associated inflammation and cognitive decline
Investigating severe traumatic brain injury using a novel human CSF cell-free mRNA gene panel
Leveraging screenomics to identify mental illness: Detecting bipolar disorder through computational analysis of smartphone screen data
Mental illnesses like bipolar disorder affect millions of people around the world, but early symptoms are often difficult to detect. Working across the disciplines of clinical psychology, communication, and computer science, my research will develop a novel computational tool to identify signals of mania and depression in real-time.