Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2023
Neuronal and genetic imprints of male mating experience

We understand a lot about how the brain gets rewired when learning a new skill by repetitive practice, such as hitting a curveball. However, how learning and experience alter the innate behaviors that we are born with is poorly understood.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Novel ketone-derived anticonvulsant agents for the treatment of childhood refractory epilepsy

We propose to apply mass spectrometry techniques to measure BHB-Phe and other KD metabolites in children undergoing KD for refractory epilepsy at Stanford. Further, in a mouse model of refractory genetic epilepsy, we will compare targeted BHB-Phe treatment to full KD treatment using transcriptomics, EEG assessment of seizures and cognitive testing.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Rejuvenating sleep to enhance brain resilience with age

Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2023
Restoring vision with epiretinal prostheses

Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
The origin of neurodegeneration: insight from a unique colonial chordate

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2023
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors

It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Use of gut-brain electrophysiology to study interoception in eating disorders

In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2022
Assessing the generalizability of individual brain models

Cognitive neuroscience has traditionally focused on identifying the neural basis of psychological traits or state effects across large samples of participants. Recently, researchers have pushed towards providing more precise estimates of individual functional organization to better understand both psychological constructs as well as their supporting neural mechanisms.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Characterizing the Genetic Architecture of Neuropathology with Machine Learning
This team will study the brains of individuals who lived past ninety with their cognitive function intact, using advanced tissue imaging and computer science to understand mechanisms of resilience that could slow neurodegeneration and preserve brain health.
Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Defining the Subcellular Biology of Brain Aging and Neurodegeneration
This team plans to map how age-related dysfunction of cellular waste disposal in lysosomes could lead to neurodegenerative diseases, potentially laying the foundation for a map of organelle function in the brain.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Development of an extracochlear neurostimulation device to restore hearing – Renewal

Sensorineural hearing loss is an increasingly prevalent condition that causes disability to over a third of US adults aged over 65. This team is developing a breakthrough device to restore high-frequency hearing that preserves residual hearing through a reversible and minimally invasive approach.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Endocannabinoid metabolism as a driver of brain aging
This team aims to discover whether the brain’s endocannabinoid system is dysregulated during aging, triggering inflammation via molecules called prostaglandins. If so, a drug that decouples these systems might restore a youthful brain state and rescue cognitive function.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Extended Reality(XR) enhanced behavioral activation for treatment of Major Depressive Disorder

This team has created an extended reality–enhanced implementation of "behavioral activation," one of the most effective forms of evidence-based psychotherapy for major depression. They will use the Neuroscience:Translate award to test the efficacy and scalability of this approach and accelerate the development of extended reality technologies to improve treatment options for major depression.

Knight Initiative for Brain Resilience
Brain Resilience Innovation Award
2022
From gut to brain: reprogramming peripheral macrophages at the intestinal barrier to prevent age-associated inflammation and cognitive decline
This team will investigate whether a decline in intestinal immune cell metabolism drives age-related inflammation and cognitive decline. By replacing aged intestinal macrophages with metabolically healthy ones, they hope to develop a novel approach to enhance cognitive resilience.
Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Leveraging screenomics to identify mental illness: Detecting bipolar disorder through computational analysis of smartphone screen data

Mental illnesses like bipolar disorder affect millions of people around the world, but early symptoms are often difficult to detect. Working across the disciplines of clinical psychology, communication, and computer science, my research will develop a novel computational tool to identify signals of mania and depression in real-time.