Neuroscience:Translate Grant Program

Image

The Neuroscience:Translate grant program supports research projects at the intersection of biology, engineering and medicine to address practical unmet needs in brain health and the neurosciences.

The program funds cross-disciplinary teams to develop new devices, diagnostic procedures, software, pharmaceutical therapies and other products that can be brought rapidly to market through new startup companies or partnerships with existing entities. Grants of $100,000-$120,000 are awarded annually to approximately three teams. Teams who have previously received Neuroscience:Translate awards may apply for a one-year renewal to continue advancing their technology.

This program was inspired by the successful Stanford Coulter Translational Research program, a partnership between Stanford Bioengineering and the Coulter Foundation managed by the Stanford Mussallem Center for Biodesign. The Wu Tsai Neurosciences Institute has partnered with Stanford Biodesign to bring this same approach and expertise to bear on the field of neuroscience and brain diseases, with guidance from a Neuroscience:Translate oversight committee comprising scientific and industry leaders in health technology development.

 

No-cost extensions

No-Cost Extension requests may be granted upon application. Applications will be strictly reviewed for compliance with the award deliverables and project. Applications are due one month prior to the award end date by downloading, completing, saving, and submitting the linked form template.

Questions? Contact Program Manager, Linda Lucianllucian@stanford.edu.

Closed

Apply for Neuroscience:Translate by November 11

Applications open on Friday, September 20, 2024 and close on Monday, November 11, 2024 at 11:59 PM. Make sure to read the full application and eligibility criteria before submitting your application.  
Application and Eligibility Criteria

Funded Neuroscience:Translate projects

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
Optimization of the African killifish platform for rapid drug screening for aggregate based neurodegenerative diseases
There are currently no available drugs for neurodegenerative diseases, including Alzheimer’s disease. Using the power of a new vertebrate aging model, the African killifish, this team is investigating age-dependent protein aggregation at a systems level and identifying aggregating proteins in the aging brain. There is huge potential to optimize the killifish platform for phenotypic screening of drug libraries, notably those targeted at protein aggregation, which is central to neurodegenerative diseases.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Topical Hedgehog modulators to enhance motor nerve regeneration after injury and repair
This team has identified a small-molecule drug pathway that can improve functional recovery from nerve injury. The team will use the Neuroscience:Translate funds to test several approaches to topically apply this compound directly to damaged nerves during surgery to safely improve patient outcomes.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
Targeting DNA repair for neuroinflammation in stroke
Acute brain inflammation after stroke and head trauma causes adverse health outcomes affecting millions of patients each year in the U.S., and current treatments are insufficient. This project will test a promising new therapy to reduce inflammation by targeting the enzyme OGG1, a potentially important controller of acute inflammatory responses. This project is jointly supported by the Wu Tsai Neurosciences Institute and SPARK.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Remote reliable measurements of movement using bluetooth enabled engineered keyboard for diagnosis of neurological diseases - Renewal

This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
The wearable ENG: a dizzy attack event monitor, Dizzy DX - Renewal
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.