Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Manipulating inflammation in the aging brain to promote brain resilience
Mechanistic dissection and therapeutic capture of an exercise-inducible metabolite signaling pathway for brain resilience
Mechanistic insights into glycerophospholipid metabolism in the lysosome
Phospholipid dysregulation is implicated in the pathogenesis of lysosomal storage disorders (LSDs). We found that glycerophosphodiesters (GPDs) accumulate in lysosomes derived from Batten disease models, a life-limiting LSD whose pathological mechanism remains elusive. GPDs are the degradation products of glycerophospholipid catabolism by phospholipases.
Mitochondrial DNA and Brain Resilience
Mutant microglia and resilience to Alzheimer’s disease
Next-generation brain imaging in freely moving animals
Calcium imaging in freely behaving animals allows for the tracking of neuronal activity under approximately normal behavioral conditions. However, the slow response time of calcium imaging inhibits high resolution voltage and temporal measurements. To address this issue, modern molecular tools have been developed to optically report the high-speed dynamics of neurons more accurately.
Optimizing computational modeling of traumatic brain injury with machine learning: biomechanics and beyond
Traumatic brain injury (TBI) has become a global health hazard. If undetected, the brain damage of TBI can accumulate, calling for better TBI modeling and warning systems. TBI modeling involves three stages: head impact kinematics, brain deformation, and injuries.
Optogenetic screening of the gut-brain axis via an internal light source
The gut-brain axis is implicated in many essential physiological and psychological functions, ranging from feeding, emotion, motivation, to memory. As a critical component of the gut-brain axis, vagal sensory neurons exhibit distinct projection patterns to target specific visceral organs.
Predicting and promoting resilient brain aging trajectories
Preserving motor engrams in Parkinson's disease: Neural circuit and transcriptomic studies and strategies for resilient motor control
Remote reliable measurements of movement using bluetooth enabled engineered keyboard for diagnosis of neurological diseases - Renewal
This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.
Resilience to Synaptic Impairments in Neurodegenerative Disorders
Restoring multi-limb motion in people with paralysis via brain-computer interface
Intracortical brain-computer interfaces (iBCIs) can restore lost communication and motor function for people with severe speech and motor impairment due to neurological injury or disease. iBCIs measure neural activity from the brain, decode this activity into control signals, and use these signals to guide prosthetic devices such as computer cursors and prosthetic arms.
Role of proteostasis and organelle homeostasis in brain resilience during aging
Silent Speech Decoding Using Flexible Electronics and Artificial Intelligence
This team aims to advance augmentative and alternative communication technology for people with communication disorders and enable new forms of human-computer interaction by combining novel materials science with modern machine learning.
Sleep circuits in neurodegenerative disease and aging
Structural analysis of chloride channel CLC-2
Membrane transport proteins are essential for life. They transport essential nutrients and minerals across the membrane barrier that surrounds each cell in the human body. This transport is necessary for every living process – from eating and breathing to learning and doing daily work.
The Synaptic Organization of Dendrites
Topical Hedgehog modulators to enhance motor nerve regeneration after injury and repair
Tracking Parkinson’s Disease with Transformer Models of Everyday Looking Behaviors
Unleashing engineered T cells as disease sensors and therapeutic actuators for neurodegenerative disease
Unlocking brain resilience with HDAC inhibition
A minimally-invasive intracranial pressure microsensor (mICP) for long-term, continuous ambulatory monitoring
Design and development of a high-performance intra-cortical speech BCI
Many neurological injuries and diseases such as brainstem stroke and Amyotrophic Lateral Sclerosis (ALS) result in severe speech impairment, drastically reducing quality of life. Recent progress in brain-computer interfaces (BCI) has allowed these individuals to communicate, but performance is still far lower than typical spoken conversation speeds.