Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Knight Initiative for Brain Resilience
Brain Resilience Innovation Award
2022
Manipulating inflammation in the aging brain to promote brain resilience
Inflammation is a hallmark of brain aging, yet the source of inflammation in the old brain—and how to eliminate it—is unknown. This team aims to provide insight on how inflammation affects the aging brain that could potentially lead to the generation of new therapies to promote brain resilience.
Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Mechanistic insights into glycerophospholipid metabolism in the lysosome

Phospholipid dysregulation is implicated in the pathogenesis of lysosomal storage disorders (LSDs). We found that glycerophosphodiesters (GPDs) accumulate in lysosomes derived from Batten disease models, a life-limiting LSD whose pathological mechanism remains elusive. GPDs are the degradation products of glycerophospholipid catabolism by phospholipases.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Mitochondrial DNA and Brain Resilience
This team proposes the first comprehensive study of how mitochondrial DNA is related to cognitive function and susceptibility to dementia in a diverse population of over 11,000 adults. The outcomes of this study will provide insight into possible racial disparities in brain health.
Knight Initiative for Brain Resilience
Brain Resilience Innovation Award
2022
Mutant microglia and resilience to Alzheimer’s disease
This project aims to identify how mutant peripheral immune cells that invade the brain might actually reduce Alzheimer’s disease risk. The research will explore how to mimic these cells’ resilience-promoting effects to design new Alzheimer’s therapies.
Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2022
Next-generation brain imaging in freely moving animals

Calcium imaging in freely behaving animals allows for the tracking of neuronal activity under approximately normal behavioral conditions. However, the slow response time of calcium imaging inhibits high resolution voltage and temporal measurements. To address this issue, modern molecular tools have been developed to optically report the high-speed dynamics of neurons more accurately.

Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2022
Optogenetic screening of the gut-brain axis via an internal light source

The gut-brain axis is implicated in many essential physiological and psychological functions, ranging from feeding, emotion, motivation, to memory. As a critical component of the gut-brain axis, vagal sensory neurons exhibit distinct projection patterns to target specific visceral organs.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Predicting and promoting resilient brain aging trajectories
Using new animal models such as the African killifish, this team aims to develop approaches to predict individual brain aging trajectories early in life based on behaviors that can be modulated to promote healthy memory, executive function, and processing speed as well as to counter dementia.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Remote reliable measurements of movement using bluetooth enabled engineered keyboard for diagnosis of neurological diseases - Renewal

This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Resilience to Synaptic Impairments in Neurodegenerative Disorders
This team will explore the idea that neurotoxic protein aggregates seen in neurodegenerative disorders act at the synaptic connections between cells, and that resilience against these disorders may come from natural synapse-supporting factors that could be transformed into new forms of therapy.
Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2022
Restoring multi-limb motion in people with paralysis via brain-computer interface

Intracortical brain-computer interfaces (iBCIs) can restore lost communication and motor function for people with severe speech and motor impairment due to neurological injury or disease. iBCIs measure neural activity from the brain, decode this activity into control signals, and use these signals to guide prosthetic devices such as computer cursors and prosthetic arms.

Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Sleep circuits in neurodegenerative disease and aging
This team plans to study whether changes in neurons in the midbrain that regulate sleep, wakefulness, and immunity could contribute to aging and neurodegeneration. If successful, this information could rescue deficits in sleep and restore a normal immune profile.
Wu Tsai Neurosciences Institute
Neurosciences Interdisciplinary Scholar Awards
2022
Structural analysis of chloride channel CLC-2

Membrane transport proteins are essential for life. They transport essential nutrients and minerals across the membrane barrier that surrounds each cell in the human body. This transport is necessary for every living process – from eating and breathing to learning and doing daily work.

Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
The Synaptic Organization of Dendrites
This team aims to mine a microscale reconstruction of a millimeter-cube of brain tissue to uncover how dendrites decode patterns of incoming signals. The project will test hypotheses that could confer the energy efficiency of neural circuits on next generation computer chips.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Topical Hedgehog modulators to enhance motor nerve regeneration after injury and repair
This team has identified a small-molecule drug pathway that can improve functional recovery from nerve injury. The team will use the Neuroscience:Translate funds to test several approaches to topically apply this compound directly to damaged nerves during surgery to safely improve patient outcomes.
Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
Tracking Parkinson’s Disease with Transformer Models of Everyday Looking Behaviors
This project aims to track cognitive decline in Parkinson’s patients by measuring and modeling how patients explore the world with their eyes. The long-term goal of this project is to set a foundation for minimally-invasive and sensitive measures for diagnosing and tracking neurodegenerative diseases.
Knight Initiative for Brain Resilience
Brain Resilience Catalyst Award
2022
Unlocking brain resilience with HDAC inhibition
This team aims to define a network of genes that contribute to stress resistance in neurons and identify how it could be activated to enhance brain resilience and protect against neurodegenerative disease.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
A minimally-invasive intracranial pressure microsensor (mICP) for long-term, continuous ambulatory monitoring
The limited available treatments (e.g., radiation, chemotherapy) for glioblastoma (GBM) can lead to swelling in the brain that causes elevated intracranial pressure (ICP), the timing of which is unpredictable; this results in the patient presenting to the emergency room with headaches, vomiting, or seizures, which leads to worsened quality of life and survival outcomes. We propose the refinement and pre-clinical validation of a pressure-sensing microfluidic ICP microsensor (mICP) that could be implanted in patients with GBM to detect elevated ICP early on.
Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Design and development of a high-performance intra-cortical speech BCI

Many neurological injuries and diseases such as brainstem stroke and Amyotrophic Lateral Sclerosis (ALS) result in severe speech impairment, drastically reducing quality of life. Recent progress in brain-computer interfaces (BCI) has allowed these individuals to communicate, but performance is still far lower than typical spoken conversation speeds.