Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
CPStim: Optimized non-invasive brain stimulation for chronic pain
Deep learning for automated seizure localization
Engineering nanoscale optical transducers of mechanical signals in the nervous system
Communication between cells in the nervous system regulates the senses, memory, and information processing. Using electrical and biochemical sensors, such as patch clamps, voltage-sensitive dyes, and calcium-sensitive dyes, scientists have mapped with extraordinary detail the interactions of the nervous system.
How animals keep time annually: molecular mechanisms of the seasonal rhythm
Adaptation to environmental variations is vital for animal survival. While short-lived organisms face unpredictable environmental fluctuations, long-lived animals are subject to regular and generally drastic environmental changes across different seasons.
How do Schwann cells sort and myelinate axons in the developing peripheral nervous system?
Schwann cells (SCs) sort and myelinate peripheral axons, and impairments in either process can cause long-term disability. There are no therapeutic strategies for targeting SC dysfunction, underscoring the need to investigate mechanisms of sorting and myelination. Both processes require highly motile SC cytoplasmic protrusions, but the basis of this motility is unclear.
Identifying the neurobiological underpinnings of meta-learning
Meta-learning, an old concept in psychology, is the ability of humans to improve the way they learn with experience. Our previous experience of learning a skill makes us better at learning another, related skill. For instance, an athlete will learn a new sport faster than someone without the same level of experience in similar learning tasks.
Magnetic Resonance Imaging of Epileptogenesis
Absence epilepsy is a form of pediatric epilepsy which causes seizures with brief lapses in awareness. Electron microscopy results in a murine model of absence epilepsy support the hypothesis that maladaptive myelination plays a role in disease progression.
PTS glove passive tactile stimulation for stroke rehab - Renewal
This team is developing wearable stimulation devices to improve limb function after stroke. The technology includes a tactile stimulation method, and the wireless, lightweight, and low-cost wearable computing devices to apply this stimulation.
Reprogramming organismal lifespan through modulation of neuropeptidergic circuits
Aging is the number one risk factor for debilitating diseases such as neurodegeneration. Can manipulation of neurons in the brain alter the body’s physiological state to extend lifespan? Neuropeptides are key modulators of short-term homeostasis such as feeding, temperature, and sleep.
Targeting DNA repair for neuroinflammation in stroke
The wearable ENG: A dizzy attack event monitor
A mobile game for domain adaptation and deep learning in autism healthcare (Seed Grant)
A multi-rank statistical model to determine the impact of behavioral state on navigational coding by medial entorhinal cortex
Behavioral state—such as alertness or exhaustion—dramatically impacts how our brains function. Yet, in spite of the key role that it plays in cognition, how behavioral state influences brain function remains a central mystery in neuroscience.
A spatiotemporally-resolved circuit model of the physiologic and behavioral effects of subanesthetic ketamine activity in the limbic system
Developing a platform of biocompatible nanoparticles that uncage a drug payload upon ultrasound application.
Accelerating maturation of 3D human brain organoid models to study human aging mechanisms.
Dr. Iram will use brain intrinsic and systemic regulators of aging, in an attempt to accelerate maturation of human-derived brain organoids. This has the potential to produce the first ever aged human brain 3D cultures and identify factors which accelerate brain aging.
Clinical translation of protein-engineered, matrix-mimetic nerve guidance conduits for peripheral nerve injury
Developing a protein-engineered nerve implant that mimics the biochemical and mechanical cues of native tissue in order to enhance the potential for neural regeneration following injury.
Forces driving myelin wrapping In oligodendrocytes
Dr. Miguel Garcia believes that identifying the mechanism of myelin wrapping is important in understanding neural development and is a critical first step towards creating much needed therapeutic approaches to stimulate remyelination in patients with demyelinating diseases.
Genetic tools to determine circuit-specific roles of myelination
These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.
Injectable photovoltaics for a wireless, gliosis-free neural stimulation interface
We believe our research has the potential of generating transformative results for both neuroscience research and neurological applications, also offering strategies to manipulate key intracellular pathways to prevent gliosis in therapeutic neural implants.
Instrumenting the nervous system at single-cell resolution
Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.
Investigating the evolution of vertebrate pair bonding mechanisms
By performing a molecular and neural network analysis across behaviorally divergent pair bonding species, Dr. Jessica Nowicki will use the power of comparative analysis to reveal core mechanisms that regulate pair bonding.
Investigating the role of a human-specific repeat element in neuropsychiatric disease risk and cerebellar function
Learning to see the physical world with biologically-inspired recurrent neural networks
Dr. Daniel Bear propose to augment state-of-the-art neural networks with two biologically-inspired properties: the ability to represent the physical world as it changes over time and the ability to learn from self-created signals rather than explicit human instruction.
Multi-modal deep learning for automated seizure localization
Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.