Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.
Projects
Investigation of synapse formation by novel nanoscale imaging techniques
Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.
Understanding a complete neural computation in the primate visual system
Understanding the brain requires understanding how the neurons that constitute it perform computations, and how those computations relate to human behavior.
Understanding why neurons die in disease
Many neurological diseases feature the death of neurons, but the mechanisms that mediate cell death in these disorders are unknown. Astrogliosis, the response of a cell-type called “astrocytes” to injury, is common to most diseases of the central nervous system (CNS), and recent studies in our lab suggest that some reactive astrocytes may release a protein that is potently toxic to neurons.
Using nanoelectrodes to measure brown adipose tissue sympathetic nerve activity in vivo
Everyone is well aware of their white adipose tissue and its ability to store excess energy as fat. In fact the efficiency with which it does this has led to obesity and related metabolic diseases becoming the largest single health burden in the United States.
A novel PET radioligand to identify microglial inflammation in Alzheimer's disease
Brain-machine interfaces: Science, engineering, and application
Developing technology to interface with the brain and create intelligent prosthetics.
Brain mechanisms of spatial reasoning in mathematics
Creating an advanced transgenic animal model of autism
Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.
Determining the microstructural basis of diffusion MRI
The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.
Enabling cell-based therapy of spinal cord injury through injectable hydrogels
Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.
Genomic analysis of the gene regulatory landscape of the developing neocortex
This research seeks to understand how our genes encode the instructions for neurons in the neocortex to properly arise during normal brain development. This knowledge will allow scientists to understand how genetic mutations perturb development leading to human disease.
Geometric analysis and variability mapping in human white matter brain structures
Understanding the relationship between structure and function in the human brain is a key interest in neuroscience. In recent years the focus is turning to understanding the role of the white matter in human cognition, brain function and neurological disorders.
In vivo selection for gene mutations that counteract photoreceptor degeneration
Massively parallel microwire arrays for deep brain stimulation
Modeling proprioceptive deficits for the design of novel sensory augmentation for post-stroke movement rehabilitation
Stroke is the main cause of adult disability; 80% of survivors sustain motor (movement) deficits that interfere with activities of daily living. There exists no proven therapeutic strategy for motor recovery of the upper extremity following stroke.
NeuroChoice: Optimizing Choice - from neuroscience to public policy
Neuro-circuit interventional research consortium for understanding the brain and improving treatment
Combining a detailed understanding of brain circuits with technology that modulates neural activity to develop improved ways of treating mental health conditions.
NeuroVision Initiative
The goal is to forge an inter-disciplinary collaboration between physicists, biologists, chemists, and translational medical scientists by inventing new ways of visualizing the brain, from individual molecules to neuronal circuits to entire brain regions, from a normally functioning neuron to a diseased brain.
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve
Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.
Stanford Brain Rejuvenation Project
Creating a center for neurodegeneration research focusing on brain maintenance and regeneration, and the role of the immune system in these processes.
Stroke Collaborative Action Network
Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.
The molecular and cellular basis of magnetosensation: quantum effects in biological systems
For decades we have known that a wide variety of animals use the earth’s magnetic field for navigation, although the means by which they sense it has remained a mystery. There is a long-standing idea that animals like migratory birds use small magnetic deposits in their beaks to act as a compass, however, this idea remains unverified and is currently questioned by many in the field.
The NeuroFab: The hub for new ideas in neuro-engineering
Creating an incubator for next-generation neural interface platforms.
The role of non-canonical GABA synthesis in midbrain dopamine neurons on striatal inhibition
Due to the critical role that dopamine producing neurons play in pathophysiology, it is important to examine the function of its co-released GABA. This research aims to study GABA biosynthesis in midbrain dopamine producing neurons and it’s effect on striatal inhibition.