Event Details:
Abstract: In this talk I will show that the foraging patterns of a small nematode, C. elegans, can be accurately described by theories of maximally informative search strategies. Further it is possible to design environmental conditions for C. elegans where worm foraging patterns follow maximally informative search strategies that are in direct contrast to chemotaxis predictions. In order to perform a maximally informative search, animals technically need to maintain a full mental map for the likelihood distribution of food throughout the environment. However, my colleagues and I find that this search can be approximated well (under conditions of our experiments) with a simple drift-diffusion model. The corresponding neural implementation within the C. elegans neural circuits will be discussed.