A major goal in systems neuroscience is to discover how patterns of activity in neural circuits produce and regulate behavior. Using synthetic biology tools, this team aims to develop first-in-class genetically encoded voltage integrators (GEVIns) capable of sensing and responding to both activation and inhibition of neurons.
We aim to develop a noninvasive method to produce on-demand and dynamically programmable light emission patterns throughout the entire brain of live mice. The emission patterns can be controlled by brain-penetrant focused ultrasound and switched with millisecond precision for rapid brain-wide optogenetic screening of different brain regions.
To understand how sensory information and physiological state integrate to drive decisions and behaviors. Dr. Xiaoke Chen's lab is focusing now on interoception, which is the sense of the physiological condition of the body. This include our abilities to feel hungry or satiated, to sense heightened blood pressure and heart rate during stress, and to discriminate different types of pain.