Funded Projects | Knight Initiative for Brain Resilience

The Knight Initiative for Brain Resilience supports bold research that has the potential to offer new insights into the biology of brain aging, the drivers of neurodegenerative disease and opportunities to promote brain health and resilience from fresh perspectives. 

View all of our funded research below

Funded research
Wu Tsai Neurosciences Institute
Endocannabinoid metabolism as a driver of brain aging
This team aims to discover whether the brain’s endocannabinoid system is dysregulated during aging, triggering inflammation via molecules called prostaglandins. If so, a drug that decouples these systems might restore a youthful brain state and rescue cognitive function.
Funded research
Wu Tsai Neurosciences Institute
Unlocking brain resilience with HDAC inhibition
This team aims to define a network of genes that contribute to stress resistance in neurons and identify how it could be activated to enhance brain resilience and protect against neurodegenerative disease.
Funded research
Wu Tsai Neurosciences Institute
Sleep circuits in neurodegenerative disease and aging
This team plans to study whether changes in neurons in the midbrain that regulate sleep, wakefulness, and immunity could contribute to aging and neurodegeneration. If successful, this information could rescue deficits in sleep and restore a normal immune profile.
Funded research
Wu Tsai Neurosciences Institute
Mitochondrial DNA and Brain Resilience
This team proposes the first comprehensive study of how mitochondrial DNA is related to cognitive function and susceptibility to dementia in a diverse population of over 11,000 adults. The outcomes of this study will provide insight into possible racial disparities in brain health.
Funded research
Wu Tsai Neurosciences Institute
Resilience to Synaptic Impairments in Neurodegenerative Disorders
This team will explore the idea that neurotoxic protein aggregates seen in neurodegenerative disorders act at the synaptic connections between cells, and that resilience against these disorders may come from natural synapse-supporting factors that could be transformed into new forms of therapy.