Research projects funded by our Innovation Grants
Funded research
Wu Tsai Neurosciences Institute
Manipulating inflammation in the aging brain to promote brain resilience
Inflammation is a hallmark of brain aging, yet the source of inflammation in the old brain — and how to eliminate it — is unknown. This team aims to provide insight on how inflammation affects the aging brain that could potentially lead to the generation of new therapies to promote brain resilience.
Funded research
Wu Tsai Neurosciences Institute
Mechanistic dissection and therapeutic capture of an exercise-inducible metabolite signaling pathway for brain resilience
Exercise improves cognition and protects against age-associated neurodegenerative diseases, but further research is needed to understand exactly how this occurs. This project aims to pave the way for therapeutics that can capture the benefits of exercise for promoting brain resilience.
Funded research
Wu Tsai Neurosciences Institute
Mutant microglia and resilience to Alzheimer’s disease
This project aims to identify how mutant peripheral immune cells that invade the brain might actually reduce Alzheimer’s disease risk. The research will explore how to mimic these cells’ resilience-promoting effects to design new Alzheimer’s therapies.
Funded research
Wu Tsai Neurosciences Institute
From gut to brain: reprogramming peripheral macrophages at the intestinal barrier to prevent age-associated inflammation and cognitive decline
This team will investigate whether a decline in intestinal immune cell metabolism drives age-related inflammation and cognitive decline. By replacing aged intestinal macrophages with metabolically healthy ones, they hope to develop a novel approach to enhance cognitive resilience.
Research projects funded by our Catalyst Grants
Funded research
Wu Tsai Neurosciences Institute
Characterizing the Genetic Architecture of Neuropathology with Machine Learning
This team will study the brains of individuals who lived past ninety with their cognitive function intact, using advanced tissue imaging and computer science to understand mechanisms of resilience that could slow neurodegeneration and preserve brain health.
Funded research
Wu Tsai Neurosciences Institute
Endocannabinoid metabolism as a driver of brain aging
This team aims to discover whether the brain’s endocannabinoid system is dysregulated during aging, triggering inflammation via molecules called prostaglandins. If so, a drug that decouples these systems might restore a youthful brain state and rescue cognitive function.
Funded research
Wu Tsai Neurosciences Institute
Unlocking brain resilience with HDAC inhibition
This team aims to define a network of genes that contribute to stress resistance in neurons and identify how it could be activated to enhance brain resilience and protect against neurodegenerative disease.
Funded research
Wu Tsai Neurosciences Institute
Defining the Subcellular Biology of Brain Aging and Neurodegeneration
This team plans to map how age-related dysfunction of cellular waste disposal in lysosomes could lead to neurodegenerative diseases, potentially laying the foundation for a map of organelle function in the brain.