Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Elucidating mechanisms of microglial tiling

In a process called tiling, homeostatic microglia homogenously organize in a grid-like fashion to achieve efficient surveillance of the brain. The molecular mechanisms underlying tiling are unknown. I hypothesize that microglia use cell-surface proteins to sense density of neighboring microglia, thereby contributing to constant cell-to-cell distances.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Inference via Abstraction: A framework for efficient Bayesian cognition

We propose a novel framework for efficient Bayesian cognition called Inference via Abstraction (IvA), which learns to approximate complex world models with simpler abstractions that capture main dependencies, but leverage structure in the prior distribution for efficient inference. We instantiate IvA with a combination of probabilistic graphical models and deep neural networks.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Design and development of a high-performance intra-cortical speech BCI

Many neurological injuries and diseases such as brainstem stroke and Amyotrophic Lateral Sclerosis (ALS) result in severe speech impairment, drastically reducing quality of life. Recent progress in brain-computer interfaces (BCI) has allowed these individuals to communicate, but performance is still far lower than typical spoken conversation speeds.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Leveraging screenomics to identify mental illness: Detecting bipolar disorder through computational analysis of smartphone screen data

Mental illnesses like bipolar disorder affect millions of people around the world, but early symptoms are often difficult to detect. Working across the disciplines of clinical psychology, communication, and computer science, my research will develop a novel computational tool to identify signals of mania and depression in real-time.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Mechanistic insights into glycerophospholipid metabolism in the lysosome

Phospholipid dysregulation is implicated in the pathogenesis of lysosomal storage disorders (LSDs). We found that glycerophosphodiesters (GPDs) accumulate in lysosomes derived from Batten disease models, a life-limiting LSD whose pathological mechanism remains elusive. GPDs are the degradation products of glycerophospholipid catabolism by phospholipases.