Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Research Accelerator Award
2021
Neurodevelopment Initiative

Elucidating the development of the infant’s brain structure & function.

Wu Tsai Neurosciences Institute
Research Accelerator Award
2021
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Elucidating mechanisms of microglial tiling

In a process called tiling, homeostatic microglia homogenously organize in a grid-like fashion to achieve efficient surveillance of the brain. The molecular mechanisms underlying tiling are unknown. I hypothesize that microglia use cell-surface proteins to sense density of neighboring microglia, thereby contributing to constant cell-to-cell distances.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Design and development of a high-performance intra-cortical speech BCI

Many neurological injuries and diseases such as brainstem stroke and Amyotrophic Lateral Sclerosis (ALS) result in severe speech impairment, drastically reducing quality of life. Recent progress in brain-computer interfaces (BCI) has allowed these individuals to communicate, but performance is still far lower than typical spoken conversation speeds.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Mapping the Mitophagy Network in Parkinson’s Disease

We will comprehensively define the gene network associated with mitochondrial dysfunction in Parkinson's disease using a cutting-edge technology, CRISPR, to understand how these nerve cells die in PD and how we can reverse the cell death to treat the disease.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Inflammation, Major Histocompatibility Class I and human brain development

Maternal infection is linked to increased risk of neurodevelopmental disorders such as autism and schizophrenia. This proposal examines how virus-associated cytokines, specifically interferons, affect human neurons modeled in brain organoids or studied directly in fetal brain samples.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Restoring multi-limb motion in people with paralysis via brain-computer interface

Intracortical brain-computer interfaces (iBCIs) can restore lost communication and motor function for people with severe speech and motor impairment due to neurological injury or disease. iBCIs measure neural activity from the brain, decode this activity into control signals, and use these signals to guide prosthetic devices such as computer cursors and prosthetic arms.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Assessing the generalizability of individual brain models

Cognitive neuroscience has traditionally focused on identifying the neural basis of psychological traits or state effects across large samples of participants. Recently, researchers have pushed towards providing more precise estimates of individual functional organization to better understand both psychological constructs as well as their supporting neural mechanisms.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Next-generation brain imaging in freely moving animals

Calcium imaging in freely behaving animals allows for the tracking of neuronal activity under approximately normal behavioral conditions. However, the slow response time of calcium imaging inhibits high resolution voltage and temporal measurements. To address this issue, modern molecular tools have been developed to optically report the high-speed dynamics of neurons more accurately.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Optogenetic screening of the gut-brain axis via an internal light source

The gut-brain axis is implicated in many essential physiological and psychological functions, ranging from feeding, emotion, motivation, to memory. As a critical component of the gut-brain axis, vagal sensory neurons exhibit distinct projection patterns to target specific visceral organs.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Structural analysis of chloride channel CLC-2

Membrane transport proteins are essential for life. They transport essential nutrients and minerals across the membrane barrier that surrounds each cell in the human body. This transport is necessary for every living process – from eating and breathing to learning and doing daily work.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Topical Hedgehog modulators to enhance motor nerve regeneration after injury and repair
This team has identified a small-molecule drug pathway that can improve functional recovery from nerve injury. The team will use the Neuroscience:Translate funds to test several approaches to topically apply this compound directly to damaged nerves during surgery to safely improve patient outcomes.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Extended Reality(XR) enhanced behavioral activation for treatment of Major Depressive Disorder

This team has created an extended reality–enhanced implementation of "behavioral activation," one of the most effective forms of evidence-based psychotherapy for major depression. They will use the Neuroscience:Translate award to test the efficacy and scalability of this approach and accelerate the development of extended reality technologies to improve treatment options for major depression.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Development of an extracochlear neurostimulation device to restore hearing – Renewal

Sensorineural hearing loss is an increasingly prevalent condition that causes disability to over a third of US adults aged over 65. This team is developing a breakthrough device to restore high-frequency hearing that preserves residual hearing through a reversible and minimally invasive approach.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Remote reliable measurements of movement using bluetooth enabled engineered keyboard for diagnosis of neurological diseases - Renewal

This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Leveraging screenomics to identify mental illness: Detecting bipolar disorder through computational analysis of smartphone screen data

Mental illnesses like bipolar disorder affect millions of people around the world, but early symptoms are often difficult to detect. Working across the disciplines of clinical psychology, communication, and computer science, my research will develop a novel computational tool to identify signals of mania and depression in real-time.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2022
Mechanistic insights into glycerophospholipid metabolism in the lysosome

Phospholipid dysregulation is implicated in the pathogenesis of lysosomal storage disorders (LSDs). We found that glycerophosphodiesters (GPDs) accumulate in lysosomes derived from Batten disease models, a life-limiting LSD whose pathological mechanism remains elusive. GPDs are the degradation products of glycerophospholipid catabolism by phospholipases.