Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Massively parallel microwire arrays for deep brain stimulation
We will engineer next generation bundled microwires deep brain stimulation using microwires that are thinner than human hair. We will use a small LED display to deliver patterned stimulation by ‘playing a video’ on the display chip, where each pixel is connected to a microwire.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.

Wu Tsai Neurosciences Institute
Seed Grant
2017
Identification of sex hormone interacting proteins
We are interested in elucidating the multiple roles that sex hormones play in development of the nervous system and in regulating brain functions that influence gender identity, puberty, and reproduction.
Wu Tsai Neurosciences Institute
Seed Grant
2017
TrkA-ing the chronic pain
A faculty team bridging chemistry and pain research will use optogenetics to understand an important signaling pathway involved in chronic pain.
Wu Tsai Neurosciences Institute
Seed Grant
2017
Remote and localized neural activation using sonomagnetic stimulation
This proposal aims to develop a new modality of noninvasive neural stimulation, sonomagnetic stimulation, that can generate an electrical current focused in a small volume deep in neural tissue, a goal not possible with any existing method of neurostimulation.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Magnetic Recording and Stimulation of Neural Tissue

We propose a new magnetic sensor that is sensitive to picoTesla-scale fields, a localized magnetic stimulator with small form-factor, and a seamless integration of both systems for applications in experimental and clinical neuroscience.