Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2015
Understanding cellular responses induced by chronic implantation of electrodes using a novel human neural differentiation platform

Electrodes implanted in the brain have great potential, with applications in neurodegenerative disease, brain-computer interfaces, and more. However, the presence of electrodes in brain tissue causes a response known as gliosis, in which a scar forms around the electrode, reducing its effectiveness and access to neurons.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2017
Engineering versatile deep neural networks that model cortical flexibility

In the course of everyday functioning, animals (including humans) are constantly faced with real-world environments in which they are required to shift unpredictably between multiple, sometimes unfamiliar, tasks. But how brains support this rapid adaptation of decision making schema, and how they allocate resources towards learning novel tasks is largely unknown both neuroscientifically and algorithmically.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Deep brain microstimulation for memory recovery

Yi Lui's project aims to use deep brain microstimulation (DBMS), which causes even less brain damage and has higher spatial resolution than DBS, for memory recovery.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2018
Synaptic rules and circuit architectures for learning from feedback

Dr. Brandon Jay Bhasin will use engineering principles from modern control theory, experimental neuroscience and computational neuroscience to significantly advance understanding of how feedback driven plasticity in a tractable neural circuit is orchestrated across multiple synaptic sites and over various timescales so that circuit dynamics are changed to improve performance.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2019
Weak supervision in medical multi-modal time series

The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
The wearable ENG: A dizzy attack event monitor
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
PTS glove passive tactile stimulation for stroke rehab - Renewal

This team is developing wearable stimulation devices to improve limb function after stroke. The technology includes a tactile stimulation method, and the wireless, lightweight, and low-cost wearable computing devices to apply this stimulation.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
The wearable ENG: a dizzy attack event monitor, Dizzy DX - Renewal
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
Extracochlear neurostimulation - Auricle

Sensorineural hearing loss is an increasingly prevalent condition that causes disability to over a third of US adults aged over 65. We are developing a breakthrough device to restore high-frequency hearing that preserves residual hearing through a reversible and minimally invasive approach.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
A minimally-invasive intracranial pressure microsensor (mICP) for long-term, continuous ambulatory monitoring
The limited available treatments (e.g., radiation, chemotherapy) for glioblastoma (GBM) can lead to swelling in the brain that causes elevated intracranial pressure (ICP), the timing of which is unpredictable; this results in the patient presenting to the emergency room with headaches, vomiting, or seizures, which leads to worsened quality of life and survival outcomes. We propose the refinement and pre-clinical validation of a pressure-sensing microfluidic ICP microsensor (mICP) that could be implanted in patients with GBM to detect elevated ICP early on.
Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Inference via Abstraction: A framework for efficient Bayesian cognition

We propose a novel framework for efficient Bayesian cognition called Inference via Abstraction (IvA), which learns to approximate complex world models with simpler abstractions that capture main dependencies, but leverage structure in the prior distribution for efficient inference. We instantiate IvA with a combination of probabilistic graphical models and deep neural networks.