Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Instrumenting the nervous system at single-cell resolution

Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Investigating the evolution of vertebrate pair bonding mechanisms

By performing a molecular and neural network analysis across behaviorally divergent pair bonding species, Dr. Jessica Nowicki will use the power of comparative analysis to reveal core mechanisms that regulate pair bonding.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Forces driving myelin wrapping In oligodendrocytes

Dr. Miguel Garcia believes that identifying the mechanism of myelin wrapping is important in understanding neural development and is a critical first step towards creating much needed therapeutic approaches to stimulate remyelination in patients with demyelinating diseases.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2019
Weak supervision in medical multi-modal time series

The project aims to alleviate this bottleneck by developing a weak supervision system that optimally deals with time-series data and takes advantage of multiple data modalities.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Sensory processing in a pre-seizure state
This team will leverage the power of silicon probes to record from hundreds of neurons in mouse epilepsy models to understand neural correlates of the pre-seizure EEG. These results will be used to optimize a real-time seizure prediction algorithm that will be tested in human patients.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Quantifying auditory-vocal affect in human social communication

This proposal brings together faculty with this diverse expertise to develop the first gold standard test of auditory-vocal affect. Once developed, validated, and normed, we will deploy this test in the clinical context of autism to quantify impairments and direct neurobiological investigation.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2020
How animals keep time annually: molecular mechanisms of the seasonal rhythm

Adaptation to environmental variations is vital for animal survival. While short-lived organisms face unpredictable environmental fluctuations, long-lived animals are subject to regular and generally drastic environmental changes across different seasons.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2020
Engineering nanoscale optical transducers of mechanical signals in the nervous system

Communication between cells in the nervous system regulates the senses, memory, and information processing. Using electrical and biochemical sensors, such as patch clamps, voltage-sensitive dyes, and calcium-sensitive dyes, scientists have mapped with extraordinary detail the interactions of the nervous system.