Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Massively parallel microwire arrays for deep brain stimulation
We will engineer next generation bundled microwires deep brain stimulation using microwires that are thinner than human hair. We will use a small LED display to deliver patterned stimulation by ‘playing a video’ on the display chip, where each pixel is connected to a microwire.
Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed force probes for deconstructing the biophysics of mechanotransduction

The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders. 

 

Wu Tsai Neurosciences Institute
Seed Grant
2015
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed nanomechanical probing of auditory mechano-sensitive cells

Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Quantitative imaging for multi-scale modeling of neurological diseases

My proposed visit to the Van De Ville lab is centered on the idea to expand our methods beyond brain tumors to other neurological diseases using the Van De Ville lab’s expertise in neuro-imaging. Imaging genomics has been focused mainly on oncology; however, other neurological diseases can be studied in the same way.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Biologically plausible neural algorithms for learning structured sequences

Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.

Wu Tsai Neurosciences Institute
Seed Grant
2017
Identification of sex hormone interacting proteins
We are interested in elucidating the multiple roles that sex hormones play in development of the nervous system and in regulating brain functions that influence gender identity, puberty, and reproduction.
Wu Tsai Neurosciences Institute
Seed Grant
2017
TrkA-ing the chronic pain
A faculty team bridging chemistry and pain research will use optogenetics to understand an important signaling pathway involved in chronic pain.
Wu Tsai Neurosciences Institute
Seed Grant
2017
Remote and localized neural activation using sonomagnetic stimulation
This proposal aims to develop a new modality of noninvasive neural stimulation, sonomagnetic stimulation, that can generate an electrical current focused in a small volume deep in neural tissue, a goal not possible with any existing method of neurostimulation.
Wu Tsai Neurosciences Institute
Seed Grant
2017
The impact of early medial temporal lobe Tau in human cognitive aging
By measuring the aggregation of Tau protein in healthy older adults as well as those with Alzheimer's disease dementia using positron emission tomography imaging combined with high-resolution magnetic resonance imaging, this team hopes to predict who is at most risk for dementia in the future.
Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Sensory processing in a pre-seizure state
This team will leverage the power of silicon probes to record from hundreds of neurons in mouse epilepsy models to understand neural correlates of the pre-seizure EEG. These results will be used to optimize a real-time seizure prediction algorithm that will be tested in human patients.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.