Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Rejuvenating sleep to enhance brain resilience with age

Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Elucidating the role of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
The origin of neurodegeneration: insight from a unique colonial chordate

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Determining the role of circadian transcriptional control in myelin-forming precursors in neurodegeneration

The causes of neurodegenerative disorders like multiple sclerosis or Alzheimer’s disease are incompletely understood, hindering our ability to gain precise diagnoses and design effective therapeutics. Understanding how the circadian rhythms regulate myelin-forming precursors will impart unique insights into normal and aberrant myelination and will have a positive impact on developing therapeutic strategies to restructure myelin.

Wu Tsai Neurosciences Institute
Research Accelerator Award
2017
The neural prosthetics translational laboratory
Our research focuses on the twin goals of investigating fundamental principles of human neuroscience and translating laboratory insights into clinically viable assistive devices for people with paralysis.
Wu Tsai Neurosciences Institute
Research Accelerator Award
2017
StrokeCog

StrokeCog is focused on cognitive problems after stroke. The team leads a study aimed at identifying if neuroinflammation plays an important role in the development of post-stroke cognitive decline.

Wu Tsai Neurosciences Institute
Research Accelerator Award
2021
Neurodevelopment Initiative

Elucidating the development of the infant’s brain structure & function.

Wu Tsai Neurosciences Institute
Research Accelerator Award
2021
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.