Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed force probes for deconstructing the biophysics of mechanotransduction

The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders. 

 

Wu Tsai Neurosciences Institute
Seed Grant
2015
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed nanomechanical probing of auditory mechano-sensitive cells

Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Quantitative imaging for multi-scale modeling of neurological diseases

My proposed visit to the Van De Ville lab is centered on the idea to expand our methods beyond brain tumors to other neurological diseases using the Van De Ville lab’s expertise in neuro-imaging. Imaging genomics has been focused mainly on oncology; however, other neurological diseases can be studied in the same way.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Biologically plausible neural algorithms for learning structured sequences

Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.

Wu Tsai Neurosciences Institute
Seed Grant
2017
Identification of sex hormone interacting proteins
We are interested in elucidating the multiple roles that sex hormones play in development of the nervous system and in regulating brain functions that influence gender identity, puberty, and reproduction.
Wu Tsai Neurosciences Institute
Seed Grant
2017
TrkA-ing the chronic pain
A faculty team bridging chemistry and pain research will use optogenetics to understand an important signaling pathway involved in chronic pain.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.