Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2024
Small molecule ion channel modulator to treat acute episodes of peripheral vertigo

This team is developing a small molecule that targets a voltage-gated ion channel within the inner ear for the symptomatic relief of peripheral vertigo attacks. They will use their Neuroscience:Translate award to further develop this molecule to restore normal function and improve activities of daily living for patients experiencing peripheral vertigo.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
High-resolution profiling of Alzheimer’s brain resilience

Resilience to Alzheimer’s disease (RAD) describes those rare individuals who exhibit normal cognitive function
while harboring a high disease burden. Better understanding of the mechanisms that confer protection against
cognitive decline despite high-level AD pathology offers potential therapeutic insights for preventing dementia in AD. Recent advances in the field provide a unique opportunity to explore the spatial distribution of molecules in the human brain at an unprecedented level of detail.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2024
Creating a pharmacologic stroke recovery therapy

This team has identified a promising protein-based therapeutic to improve stroke recovery.  The team will use the Neuroscience:Translate award to identify key components of this protein to maximize its therapeutic potential for stroke treatments.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2024
Clinical translation of a new PET radiotracer for mapping innate immune activation in multiple sclerosis and other neurodegenerative diseases

This team recently identified a selective biomarker of inflammation-promoting immune cells in the central nervous system. They will use their Neuroscience:Translate award to develop non-invasive molecular imaging strategies to distinguish between harmful (pro-inflammatory) and helpful (anti-inflammatory) immune cells in patients with Multiple sclerosis (MS).

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2024
Assessing the feasibility of an autologous cell/gel therapy for spinal cord injury

This team has developed a new therapy for patients with spinal cord injury, involving injection into the spinal cord of patient-derived stem cells within an engineered protective gel. They will use their Neuroscience:Translate award to further test and develop this novel therapy in preparation for first-in-human clinical trials. 

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2024
Targeting mitochondria in glioblastoma

This team recently discovered that a small molecule they had originally developed to treat Parkinson’s disease can also reduce the volume of glioblastoma tumors – the most common form of aggressive brain tumor — by targeting the mitochondrial protein Miro1. They will use their Neuroscience:Translate award to study the mechanisms of the compound’s anti-tumor action and prepare to apply for investigational-new-drug status to move this discovery toward the clinic.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
TREM1 in peripheral myeloid cells exacerbates cognitive decline in aging and Alzheimer's disease

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States and there is a tremendous need for improved therapeutic strategies to treat this prevalent neurodegenerative disease. A devastating symptom of AD is progressive memory loss; this particular disease feature has proven difficult to treat. However, research has begun to unravel novel drivers of AD, including the important role the body’s immune system plays in promoting memory loss. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Evaluating the immunomodulatory role of circular RNAs in microglia

Neuroinflammation is common in several neurodegenerative diseases, with brain immune cells, specifically
microglia, being a main driver of the inflammatory process. Understanding what triggers microglial activation and its pathways will lead to a better knowledge of inflammatory mechanisms involved in neurodegenerative disease pathology. Circular RNAs (circRNAs) have been studied extensively in the peripheral immune system due to their ability to induce innate immune responses. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Neural mechanisms of episodic memory resilience in longitudinal aging brains

Maintaining the health and function of the aging brain is crucial to improving the quality of older people’s lives and reducing societal burden. Aging is often accompanied by a decline in memory for life events (episodic memory), especially in those at risk for Alzheimer’s disease (AD). Yet some at-risk individual’s manage to maintain memory function, which raises important questions about the brain mechanisms that underly memory resilience.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Sleep and neuronal energy management in neurodegeneration

Sleep is critical for brain function in many animals, and chronic disruptions in sleep patterns are strongly linked to the emergence of neurodegenerative diseases like Alzheimer’s and Parkinson’s. When animals sleep, neural
activity and brain metabolism change dramatically; however, we do not know what the molecular functions of
sleep are in the brain, nor do we know how these processes are linked to brain health.