Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Restoring vision with epiretinal prostheses

Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Improving BCI generalizability with multi-task modeling and autocalibration

Brain-computer interfaces (BCIs) are systems that enable using neural activity to control and interact with external devices. For people who lose the ability to move or speak due to injury or disease, BCIs provide a potential avenue to restore this loss of function.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2016
Investigation of synapse formation by novel nanoscale imaging techniques

Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Enabling cell-based therapy of spinal cord injury through injectable hydrogels

Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Discovering new volitionally-controllable neural degrees-of-freedom for neural prostheses

A top priority for people with paralysis is reach and grasp ability. Technologies such as robotic arm prostheses or electrically stimulating paralyzed muscles can meet this need. Existing methods rely on the remaining muscles, are unintuitive and require laborious sequences of simple commands. Reading out a patient’s desired movement directly from their brain could overcome these limitations.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2019
Instrumenting the nervous system at single-cell resolution

Dr. Dante Muratore's goal is to design the next generation of neural interfaces that allow single-cell resolution when communicating with the nervous system. To achieve this, he has conceived a new way of reading information from the neural system.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2020
Engineering nanoscale optical transducers of mechanical signals in the nervous system

Communication between cells in the nervous system regulates the senses, memory, and information processing. Using electrical and biochemical sensors, such as patch clamps, voltage-sensitive dyes, and calcium-sensitive dyes, scientists have mapped with extraordinary detail the interactions of the nervous system.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
The wearable ENG: A dizzy attack event monitor
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
PTS glove passive tactile stimulation for stroke rehab - Renewal

This team is developing wearable stimulation devices to improve limb function after stroke. The technology includes a tactile stimulation method, and the wireless, lightweight, and low-cost wearable computing devices to apply this stimulation.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2021
Dissecting curious exploration with self-supervised machine learning

What are the principles that guide curiosity-based exploration? What is the neural circuitry that implements curiosity? How can insights related to the phenomenon of curiosity improve the education and capabilities of humans and artificially intelligent agents? To address these questions, Isaac Kauvar will take an interdisciplinary approach — positioned at the intersection of computer science, neuroscience, and psychology.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2021
Genetic access of cell types using viral vectors

Multicellular organisms consist of numerous cell types with specialized biological functions. To understand such complex biological systems, genetic access to each cell type is needed for functional analysis and manipulations.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
The wearable ENG: a dizzy attack event monitor, Dizzy DX - Renewal
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
Extracochlear neurostimulation - Auricle

Sensorineural hearing loss is an increasingly prevalent condition that causes disability to over a third of US adults aged over 65. We are developing a breakthrough device to restore high-frequency hearing that preserves residual hearing through a reversible and minimally invasive approach.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
A minimally-invasive intracranial pressure microsensor (mICP) for long-term, continuous ambulatory monitoring
The limited available treatments (e.g., radiation, chemotherapy) for glioblastoma (GBM) can lead to swelling in the brain that causes elevated intracranial pressure (ICP), the timing of which is unpredictable; this results in the patient presenting to the emergency room with headaches, vomiting, or seizures, which leads to worsened quality of life and survival outcomes. We propose the refinement and pre-clinical validation of a pressure-sensing microfluidic ICP microsensor (mICP) that could be implanted in patients with GBM to detect elevated ICP early on.