Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Rejuvenating sleep to enhance brain resilience with age

Sleep is a critical behavioral state that fulfills essential needs for health, including clearing waste products (e.g., protein aggregates) from the brain. But sleep is not everlasting. As humans age, sleep quality strikingly deteriorates, and this decline is associated with dementias (e.g., Alzheimer’s disease).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Elucidating the role of alternative polyadenylation in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD)

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
The origin of neurodegeneration: insight from a unique colonial chordate

With an aging population, neurodegenerative disorders contribute increasingly to our global health burden with no cure or effective treatments. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two neurodegenerative disorders that are distinct in clinical presentation (ALS impairs movement/breathing, whereas FTD impairs behavior/cognition).

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Determining the role of circadian transcriptional control in myelin-forming precursors in neurodegeneration

The causes of neurodegenerative disorders like multiple sclerosis or Alzheimer’s disease are incompletely understood, hindering our ability to gain precise diagnoses and design effective therapeutics. Understanding how the circadian rhythms regulate myelin-forming precursors will impart unique insights into normal and aberrant myelination and will have a positive impact on developing therapeutic strategies to restructure myelin.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
High-resolution profiling of Alzheimer’s brain resilience

Resilience to Alzheimer’s disease (RAD) describes those rare individuals who exhibit normal cognitive function
while harboring a high disease burden. Better understanding of the mechanisms that confer protection against
cognitive decline despite high-level AD pathology offers potential therapeutic insights for preventing dementia in AD. Recent advances in the field provide a unique opportunity to explore the spatial distribution of molecules in the human brain at an unprecedented level of detail.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
TREM1 in peripheral myeloid cells exacerbates cognitive decline in aging and Alzheimer's disease

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States and there is a tremendous need for improved therapeutic strategies to treat this prevalent neurodegenerative disease. A devastating symptom of AD is progressive memory loss; this particular disease feature has proven difficult to treat. However, research has begun to unravel novel drivers of AD, including the important role the body’s immune system plays in promoting memory loss. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Evaluating the immunomodulatory role of circular RNAs in microglia

Neuroinflammation is common in several neurodegenerative diseases, with brain immune cells, specifically
microglia, being a main driver of the inflammatory process. Understanding what triggers microglial activation and its pathways will lead to a better knowledge of inflammatory mechanisms involved in neurodegenerative disease pathology. Circular RNAs (circRNAs) have been studied extensively in the peripheral immune system due to their ability to induce innate immune responses. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Neural mechanisms of episodic memory resilience in longitudinal aging brains

Maintaining the health and function of the aging brain is crucial to improving the quality of older people’s lives and reducing societal burden. Aging is often accompanied by a decline in memory for life events (episodic memory), especially in those at risk for Alzheimer’s disease (AD). Yet some at-risk individual’s manage to maintain memory function, which raises important questions about the brain mechanisms that underly memory resilience.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Sleep and neuronal energy management in neurodegeneration

Sleep is critical for brain function in many animals, and chronic disruptions in sleep patterns are strongly linked to the emergence of neurodegenerative diseases like Alzheimer’s and Parkinson’s. When animals sleep, neural
activity and brain metabolism change dramatically; however, we do not know what the molecular functions of
sleep are in the brain, nor do we know how these processes are linked to brain health. 

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed force probes for deconstructing the biophysics of mechanotransduction

The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders. 

 

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed nanomechanical probing of auditory mechano-sensitive cells

Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Quantitative imaging for multi-scale modeling of neurological diseases

My proposed visit to the Van De Ville lab is centered on the idea to expand our methods beyond brain tumors to other neurological diseases using the Van De Ville lab’s expertise in neuro-imaging. Imaging genomics has been focused mainly on oncology; however, other neurological diseases can be studied in the same way.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Biologically plausible neural algorithms for learning structured sequences

Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.