Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2024
Multifunctional vascular-like electronics for integration and monitoring of human neural organoids

This study will introduce a vascular-like electronic system that merges seamlessly with neural organoids,
establishing an integrated vascular-electronic-neural network. This envisaged platform holds the promise of heralding a transformative phase in the evolution of human neural organoid research and elucidating the
fundamental understanding on the roles of oxygen and nutrient perfusion during neural development.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2024
Neuronal innervation dynamics in uterine function and maternal age-associated miscarriage

This proposal addresses three interconnected, yet independent aims focused on the neural mechanisms implicated in age-associated miscarriages. First, the proposal aims to construct a comprehensive neuro-uterine atlas delineating neuronal subtypes innervating the uterus, elucidating how innervation patterns and transcriptome profiles evolve with age. Second, the proposal aims to implement cutting-edge tissue clearing techniques on extracted uteri to discern alterations in uterine innervation patterns and signaling across the rodent estrous cycle and the first trimester of pregnancy.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
High-resolution profiling of Alzheimer’s brain resilience

Resilience to Alzheimer’s disease (RAD) describes those rare individuals who exhibit normal cognitive function
while harboring a high disease burden. Better understanding of the mechanisms that confer protection against
cognitive decline despite high-level AD pathology offers potential therapeutic insights for preventing dementia in AD. Recent advances in the field provide a unique opportunity to explore the spatial distribution of molecules in the human brain at an unprecedented level of detail.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
TREM1 in peripheral myeloid cells exacerbates cognitive decline in aging and Alzheimer's disease

Alzheimer’s disease (AD) is the sixth leading cause of death in the United States and there is a tremendous need for improved therapeutic strategies to treat this prevalent neurodegenerative disease. A devastating symptom of AD is progressive memory loss; this particular disease feature has proven difficult to treat. However, research has begun to unravel novel drivers of AD, including the important role the body’s immune system plays in promoting memory loss. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Evaluating the immunomodulatory role of circular RNAs in microglia

Neuroinflammation is common in several neurodegenerative diseases, with brain immune cells, specifically
microglia, being a main driver of the inflammatory process. Understanding what triggers microglial activation and its pathways will lead to a better knowledge of inflammatory mechanisms involved in neurodegenerative disease pathology. Circular RNAs (circRNAs) have been studied extensively in the peripheral immune system due to their ability to induce innate immune responses. 

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Neural mechanisms of episodic memory resilience in longitudinal aging brains

Maintaining the health and function of the aging brain is crucial to improving the quality of older people’s lives and reducing societal burden. Aging is often accompanied by a decline in memory for life events (episodic memory), especially in those at risk for Alzheimer’s disease (AD). Yet some at-risk individual’s manage to maintain memory function, which raises important questions about the brain mechanisms that underly memory resilience.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2024
Sleep and neuronal energy management in neurodegeneration

Sleep is critical for brain function in many animals, and chronic disruptions in sleep patterns are strongly linked to the emergence of neurodegenerative diseases like Alzheimer’s and Parkinson’s. When animals sleep, neural
activity and brain metabolism change dramatically; however, we do not know what the molecular functions of
sleep are in the brain, nor do we know how these processes are linked to brain health. 

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2024
How do early life experiences shape the neural underpinnings of caregiver olfactory recognition?

The ability of an infant to distinguish caregivers from strangers is fundamental for survival early in life. Across
many taxa, newborns use olfactory cues to recognize caregivers. Caregiver odors induce proximity-seeking
behavior and alleviate stress in neonatal mammals, including humans. Since all altricial animals rely on parental
care for survival and children with developmental disorders (e.g., fragile X syndrome and autism) often have
deficits in the olfactory system, it is essential to understand the mechanisms for linking caregiver odors with
affiliative behavior.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2024
Interrogating the effects of serotonin and dopamine on neural activity in the nucleus accumbens during aggression

Studying the brain circuits involved in aggression will help us tackle big social issues like hate crimes, antisocial
behavior, and violence. Imagine if we could better understand why some people act aggressively towards
others—we could use this knowledge to protect people from harm and create a world where everyone feels safe. Chemicals in our brain, such as dopamine and serotonin, affect neural activity to modulate behavior. When we experience something rewarding, like having good food or meeting friends, dopamine is released in the brain.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2024
Interpretable machine learning to decipher gene regulation in brain development and disruption in disease

Brain development is a complex process where cells must self-renew and differentiate at the right place and right time. Gene regulation during development involves sequences in the genome which affect the expression of genes locally, and transcription factors, proteins that bind these sequences and activate genes throughout the genome. At active regulatory sequences and genes, DNA is accessible to these proteins, while inactive DNA is tightly compacted.