Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2021
Elucidating mechanisms of microglial tiling

In a process called tiling, homeostatic microglia homogenously organize in a grid-like fashion to achieve efficient surveillance of the brain. The molecular mechanisms underlying tiling are unknown. I hypothesize that microglia use cell-surface proteins to sense density of neighboring microglia, thereby contributing to constant cell-to-cell distances.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Restoring multi-limb motion in people with paralysis via brain-computer interface

Intracortical brain-computer interfaces (iBCIs) can restore lost communication and motor function for people with severe speech and motor impairment due to neurological injury or disease. iBCIs measure neural activity from the brain, decode this activity into control signals, and use these signals to guide prosthetic devices such as computer cursors and prosthetic arms.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Assessing the generalizability of individual brain models

Cognitive neuroscience has traditionally focused on identifying the neural basis of psychological traits or state effects across large samples of participants. Recently, researchers have pushed towards providing more precise estimates of individual functional organization to better understand both psychological constructs as well as their supporting neural mechanisms.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Next-generation brain imaging in freely moving animals

Calcium imaging in freely behaving animals allows for the tracking of neuronal activity under approximately normal behavioral conditions. However, the slow response time of calcium imaging inhibits high resolution voltage and temporal measurements. To address this issue, modern molecular tools have been developed to optically report the high-speed dynamics of neurons more accurately.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Optogenetic screening of the gut-brain axis via an internal light source

The gut-brain axis is implicated in many essential physiological and psychological functions, ranging from feeding, emotion, motivation, to memory. As a critical component of the gut-brain axis, vagal sensory neurons exhibit distinct projection patterns to target specific visceral organs.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2022
Structural analysis of chloride channel CLC-2

Membrane transport proteins are essential for life. They transport essential nutrients and minerals across the membrane barrier that surrounds each cell in the human body. This transport is necessary for every living process – from eating and breathing to learning and doing daily work.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Restoring vision with epiretinal prostheses

Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Improving BCI generalizability with multi-task modeling and autocalibration

Brain-computer interfaces (BCIs) are systems that enable using neural activity to control and interact with external devices. For people who lose the ability to move or speak due to injury or disease, BCIs provide a potential avenue to restore this loss of function.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Massively parallel microwire arrays for deep brain stimulation
We will engineer next generation bundled microwires deep brain stimulation using microwires that are thinner than human hair. We will use a small LED display to deliver patterned stimulation by ‘playing a video’ on the display chip, where each pixel is connected to a microwire.
Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
Stanford NeuroTechnology Initiative (Phase 2)

Our goal is to develop the next generation of neural interfaces that match the resolution and performance of the biological circuitry. We will focus on two signature efforts to spearhead the necessary advances: high-density wire bundles for electrical recording and stimulation, and analog and digital bi-directional retinal prostheses for restoration of vision.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2016
Investigation of synapse formation by novel nanoscale imaging techniques

Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Enabling cell-based therapy of spinal cord injury through injectable hydrogels

Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2015
Understanding cellular responses induced by chronic implantation of electrodes using a novel human neural differentiation platform

Electrodes implanted in the brain have great potential, with applications in neurodegenerative disease, brain-computer interfaces, and more. However, the presence of electrodes in brain tissue causes a response known as gliosis, in which a scar forms around the electrode, reducing its effectiveness and access to neurons.

Wu Tsai Neurosciences Institute
SIGF - Graduate Fellowship
2017
Engineering versatile deep neural networks that model cortical flexibility

In the course of everyday functioning, animals (including humans) are constantly faced with real-world environments in which they are required to shift unpredictably between multiple, sometimes unfamiliar, tasks. But how brains support this rapid adaptation of decision making schema, and how they allocate resources towards learning novel tasks is largely unknown both neuroscientifically and algorithmically.