Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Mapping the Mitophagy Network in Parkinson’s Disease

We will comprehensively define the gene network associated with mitochondrial dysfunction in Parkinson's disease using a cutting-edge technology, CRISPR, to understand how these nerve cells die in PD and how we can reverse the cell death to treat the disease.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Magnetic Recording and Stimulation of Neural Tissue

We propose a new magnetic sensor that is sensitive to picoTesla-scale fields, a localized magnetic stimulator with small form-factor, and a seamless integration of both systems for applications in experimental and clinical neuroscience.

Wu Tsai Neurosciences Institute
Seed Grant
2021
Inflammation, Major Histocompatibility Class I and human brain development

Maternal infection is linked to increased risk of neurodevelopmental disorders such as autism and schizophrenia. This proposal examines how virus-associated cytokines, specifically interferons, affect human neurons modeled in brain organoids or studied directly in fetal brain samples.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Predicting and promoting resilient brain aging trajectories

Using new animal models such as the African killifish, this team aims to develop approaches to predict individual brain aging trajectories early in life based on behaviors that can be modulated to promote healthy memory, executive function and processing speed as well as counter dementia.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Resilience to Synaptic Impairments in Neurodegenerative Disorders

This team will explore the idea that neurotoxic protein aggregates seen in neurodegenerative disorders act at the synaptic connections between cells, and that resilience against these disorders may come from natural synapse-supporting factors that could be transformed into new forms of therapy.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Mitochondrial DNA and Brain Resilience

This team proposes the first comprehensive study of how mitochondrial DNA is related to cognitive function and susceptibility to dementia in a diverse population of over 11,000 adults. The outcomes of this study will provide insight into possible racial disparities in brain health.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Sleep circuits in neurodegenerative disease and aging

This team plans to study whether changes in neurons in the midbrain that regulate sleep, wakefulness, and immunity could contribute to aging and neurodegeneration. If successful, this information could rescue deficits in sleep and restore a normal immune profile.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Unlocking brain resilience with HDAC inhibition

This team aims to define a network of genes that contribute to stress resistance in neurons and identify how it could be activated to enhance brain resilience and protect against neurodegenerative disease.

Knight Initiative for Brain Resilience
Catalyst Award
2022
Endocannabinoid metabolism as a driver of brain aging

This team aims to discover whether the brain’s endocannabinoid system is dysregulated during aging, triggering inflammation via molecules called prostaglandins. If so, a drug that decouples these systems might restore a youthful brain state and rescue cognitive function.