Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Microglia-Mediated Astrocyte Activation in Chronic Pain

While acute pain is an important biological signal in response to injured tissue, chronic pain occurs when the pain signaling outlasts the initial injury and has deleterious effects on health and quality of life. Chronic pain represents an enormous public health burden with few therapeutic options.

Knight Initiative for Brain Resilience
Brain Resilience Scholar Award
2023
Determining the role of circadian transcriptional control in myelin-forming precursors in neurodegeneration

The causes of neurodegenerative disorders like multiple sclerosis or Alzheimer’s disease are incompletely understood, hindering our ability to gain precise diagnoses and design effective therapeutics. Understanding how the circadian rhythms regulate myelin-forming precursors will impart unique insights into normal and aberrant myelination and will have a positive impact on developing therapeutic strategies to restructure myelin.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
High-Fidelity Artificial Retina for Vision Restoration

This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.

Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
The Synaptic Organization of Dendrites
This team aims to mine a microscale reconstruction of a millimeter-cube of brain tissue to uncover how dendrites decode patterns of incoming signals. The project will test hypotheses that could confer the energy efficiency of neural circuits on next generation computer chips.
Wu Tsai Neurosciences Institute
Neuro-AI Grant
2022
Tracking Parkinson’s Disease with Transformer Models of Everyday Looking Behaviors
This project aims to track cognitive decline in Parkinson’s patients by measuring and modeling how patients explore the world with their eyes. The long-term goal of this project is to set a foundation for minimally-invasive and sensitive measures for diagnosing and tracking neurodegenerative diseases.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Dissecting mechanisms of gut-brain communication in Parkinson’s Disease

People with Parkinson’s Disease (PD) have different types of bacteria in their guts compared to people without neurological diseases. We will study which gut bacteria for people with PD to gain a better understanding of how gut bacteria contribute to inflammation in the body and in the brain or people with this condition. 

Wu Tsai Neurosciences Institute
Seed Grant
2023
Novel ketone-derived anticonvulsant agents for the treatment of childhood refractory epilepsy

We propose to apply mass spectrometry techniques to measure BHB-Phe and other KD metabolites in children undergoing KD for refractory epilepsy at Stanford. Further, in a mouse model of refractory genetic epilepsy, we will compare targeted BHB-Phe treatment to full KD treatment using transcriptomics, EEG assessment of seizures and cognitive testing.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Use of gut-brain electrophysiology to study interoception in eating disorders

In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.

Wu Tsai Neurosciences Institute
Funded research
2024
Biomarkers of awareness and response to treatment in obsessive-compulsive disorder (BARTOC): Implementing EEG-based biomarkers of cognitive control in a pilot study of nitrous oxide inhalation vs placebo in OCD

This project is focused on developing EEG-based measures of cognitive control and conflict processing in patients with obsessive-compulsive disorder (OCD). OCD is characterized by recurrent, intrusive, and distressing thoughts, and patients are often limited by rigid, inflexible behavioral routines as well as poor clinical insight into their illness.

Wu Tsai Neurosciences Institute
Funded research
2024
Investigating the role of exteroception in modulating interoception

Commonly used measures of interoception—the brain’s perception of the body’s internal state—only subjectively capture the body’s interpretation of hunger and satiety signaling. The Coleman Lab is developing objective, noninvasive, electrophysiologic approaches to assess human hunger and satiety signaling and how external senses modulate this signaling.

Wu Tsai Neurosciences Institute
Funded research
2024
Pilot study of high-density EEG to assess markers of successful cognitive training in MCI

This team is working on understanding which patients with mild cognitive impairment (MCI) will best benefit from cognitive training. They are researching a multimodal approach to understand this question and will use their Koret pilot grant award to evaluate high-density EEG biomarkers for successful cognitive training in MCI. 

Wu Tsai Neurosciences Institute
Funded research
2024
EEG markers of self-efficacy and self-regulation in chronic pain patients with and without heavy drinking

This project aims to identify brain-based EEG markers of self-efficacy and self-regulation, which are the two critical treatment targets for people with chronic pain and comorbid heavy alcohol use. Such objective markers will assist in accurate diagnosis and assessment of treatment responses, which may enable a precision medicine approach for chronic pain and substance use disorders. 

Wu Tsai Neurosciences Institute
Funded research
2024
Mixed-reality neuronavigation for TMS treatment of depression

This team is developing a cutting-edge mixed reality application to improve the targeted delivery of transcranial magnetic stimulation (TMS). TMS is increasingly being used as a treatment for psychiatric conditions, but the success of the treatment depends critically on its precise delivery.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
Stanford Brain Rejuvenation Project (Phase 2)

The Stanford Brain Rejuvenation Project is an initiative by leading aging researchers, neuroscientists, chemists, and engineers to understand the basis of brain aging and rejuvenation and how they relate to neurodegeneration.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
Stroke Collaborative Action Network

Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.