Funded Projects

Funded research
Wu Tsai Neurosciences Institute
NeuroVision Initiative

The goal is to forge an inter-disciplinary collaboration between physicists, biologists, chemists, and translational medical scientists by inventing new ways of visualizing the brain, from individual molecules to neuronal circuits to entire brain regions, from a normally functioning neuron to a diseased brain.

Funded research
Wu Tsai Neurosciences Institute
Stroke Collaborative Action Network

Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.

Funded research
Wu Tsai Neurosciences Institute
Mechanisms of plasma proteins that rejuvenate the aged brain

One in three people will develop Alzheimer’s disease or another dementia during their lifetime, but effective treatment still does not exist despite intense efforts. Recently, blood from young mice has been found to rejuvenate several tissues of old mice, including the brain.

Funded research
Wu Tsai Neurosciences Institute
Systematic identification of wiring specificity molecules in Drosophila olfactory circuit using single cell RNA-seq

Precise neural circuit assembly is critical for appropriate function of the nervous system. A functional circuit requires proper targeting and matching of axons and dendrites of pre- and post-synaptic neurons. However, our understanding of the mechanisms that establish wiring specificity of complex neural circuit is far from complete.

Funded research
Wu Tsai Neurosciences Institute
Developing a dopamine and neural systems model of anhedonia

    More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.

Funded research
Wu Tsai Neurosciences Institute
In vivo analysis of cAMP dynamics in developing glial cells

Cyclic adenosine monophosphate (cAMP) is an important intracellular messenger that plays a critical role in the development of the central and peripheral nervous system. However, the mechanisms of action of cAMP in the nervous system development are poorly understood and there are currently no suitable methods to visualize cAMP in the cells of living animals.

Funded research
Wu Tsai Neurosciences Institute
Combining electrical and optical measurements on voltage-gated sodium channel toxins

Ion channels in the membranes of neuronal cells are the key regulators of neuronal signaling. An ion channel works as a gate that can open and close to allow specific molecules to enter or leave the cell. One important type of ion channels are voltage-gated sodium channels (NaVs), which are essential for many processes in our brain.

Funded research
Wu Tsai Neurosciences Institute
Investigation of synapse formation by novel nanoscale imaging techniques

Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.

Funded research
Wu Tsai Neurosciences Institute
The molecular and cellular basis of magnetosensation: quantum effects in biological systems

For decades we have known that a wide variety of animals use the earth’s magnetic field for navigation, although the means by which they sense it has remained a mystery. There is a long-standing idea that animals like migratory birds use small magnetic deposits in their beaks to act as a compass, however, this idea remains unverified and is currently questioned by many in the field.

Funded research
Wu Tsai Neurosciences Institute
Enabling cell-based therapy of spinal cord injury through injectable hydrogels

Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.

Funded research
Wu Tsai Neurosciences Institute
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve

Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.

Funded research
Wu Tsai Neurosciences Institute
Genomic analysis of the gene regulatory landscape of the developing neocortex

This research seeks to understand how our genes encode the instructions for neurons in the neocortex to properly arise during normal brain development. This knowledge will allow scientists to understand how genetic mutations perturb development leading to human disease.

Funded research
Wu Tsai Neurosciences Institute
Determining the microstructural basis of diffusion MRI

The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.

Funded research
Wu Tsai Neurosciences Institute
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Funded research
Wu Tsai Neurosciences Institute
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.