Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Seed Grant
2023
Use of gut-brain electrophysiology to study interoception in eating disorders

In this study, we aim to (i) perform a feasibility study to determine the acceptance and feasibility of performing such recordings in the AN and ARFID eating disorders population and (ii) test the hypothesis that the electrophysiologic monitoring of the brain and stomach is associated with a clinically validated behavioral measure of interoception involving water distention of the stomach.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
Stanford Brain Rejuvenation Project (Phase 2)

The Stanford Brain Rejuvenation Project is an initiative by leading aging researchers, neuroscientists, chemists, and engineers to understand the basis of brain aging and rejuvenation and how they relate to neurodegeneration.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
Stroke Collaborative Action Network

Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Developing a dopamine and neural systems model of anhedonia

    More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve

Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Determining the microstructural basis of diffusion MRI

The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.

Wu Tsai Neurosciences Institute
Seed Grant
2017
The impact of early medial temporal lobe Tau in human cognitive aging
By measuring the aggregation of Tau protein in healthy older adults as well as those with Alzheimer's disease dementia using positron emission tomography imaging combined with high-resolution magnetic resonance imaging, this team hopes to predict who is at most risk for dementia in the future.
Wu Tsai Neurosciences Institute
Research Accelerator Award
2017
StrokeCog

StrokeCog is focused on cognitive problems after stroke. The team leads a study aimed at identifying if neuroinflammation plays an important role in the development of post-stroke cognitive decline.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Sustained release of growth factors from bioengineered synthetic "cells" for treating spinal cord injury

Spinal cord injury (SCI) is a debilitating condition that affects young adults between the ages of 16 and 30, which leads to lifelong medical and financial burdens. SCI still results in a decreased quality-of-life and lower life expectancy for patients. This is due in part to the lack of a regenerative-based therapeutic approach to treating SCI in the clinic.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Stanford Brain Organogenesis Program (Phase 1)

Developing brain organoids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Sensory processing in a pre-seizure state
This team will leverage the power of silicon probes to record from hundreds of neurons in mouse epilepsy models to understand neural correlates of the pre-seizure EEG. These results will be used to optimize a real-time seizure prediction algorithm that will be tested in human patients.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Quantifying auditory-vocal affect in human social communication

This proposal brings together faculty with this diverse expertise to develop the first gold standard test of auditory-vocal affect. Once developed, validated, and normed, we will deploy this test in the clinical context of autism to quantify impairments and direct neurobiological investigation.