Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
NeuroChoice Initiative (Phase 2)
We propose to connect diverse faculty to deepen interdisciplinary understanding of the neural mechanisms supporting addictive choice by combining conceptual, experimental, and clinical approaches that bridge historically disparate fields of inquiry.
Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
Stanford NeuroTechnology Initiative (Phase 2)

Our goal is to develop the next generation of neural interfaces that match the resolution and performance of the biological circuitry. We will focus on two signature efforts to spearhead the necessary advances: high-density wire bundles for electrical recording and stimulation, and analog and digital bi-directional retinal prostheses for restoration of vision.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2017
Stanford Brain Rejuvenation Project (Phase 2)

The Stanford Brain Rejuvenation Project is an initiative by leading aging researchers, neuroscientists, chemists, and engineers to understand the basis of brain aging and rejuvenation and how they relate to neurodegeneration.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
NeuroVision Initiative

The goal is to forge an inter-disciplinary collaboration between physicists, biologists, chemists, and translational medical scientists by inventing new ways of visualizing the brain, from individual molecules to neuronal circuits to entire brain regions, from a normally functioning neuron to a diseased brain.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
Stroke Collaborative Action Network

Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2015
NeuroChoice: Optimizing Choice - from neuroscience to public policy
This proposal brings together faculty from diverse disciplines to deepen our understanding of the neural mechanisms supporting choice, and extend this knowledge to optimize choices related to addiction and investment. This consilience will require new conceptual and experimental tools designed to bridge historically distant fields of inquiry. Our team aims to transform the scientific understanding of choice, and to translate relevant knowledge to promote more optimal decision-making.
Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
NeuroPlant Initiative

The NeuroPlant Initiative aims to leverage a botanical armamentarium to manipulate the brain — by building a pipeline to explore chemicals synthesized in plants as potential new treatments for neurological disease and as a window into the chemistry of the brain.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neurodevelopment Initiative

Investigating how the brain develops from infancy to adulthood across species, focusing on how the interplay between structural development, functional development, experience and affect brain computations and ultimately behavior.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Stanford Brain Organogenesis Program (Phase 1)

Developing brain organoids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2018
Neuro-omics Initiative (Phase 1)

Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2021
Stanford Brain Organogenesis Program (Phase 2)

Developing brain organoids and assembloids – three dimensional brain tissues grown in the lab – to study human brain development, evolution and neuropsychiatric disorders.

Wu Tsai Neurosciences Institute
Big Ideas in Neuroscience Award
2021
Neuro-Omics Initiative (Phase 2)

Creating new tools to help neuroscientists bridge the study of genes and proteins operating in the brain to the study of brain circuits and systems, which could lead to a deeper understanding of brain function and disease.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Neuronal and genetic imprints of male mating experience

We understand a lot about how the brain gets rewired when learning a new skill by repetitive practice, such as hitting a curveball. However, how learning and experience alter the innate behaviors that we are born with is poorly understood.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Restoring vision with epiretinal prostheses

Millions of people are blind, yet we still don’t have the technology to satisfactorily restore vision. I aim to create a prosthetic device to do so. This device can be implanted in the eyes of a blind patient, resting on a tissue layer called the retina.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Improving BCI generalizability with multi-task modeling and autocalibration

Brain-computer interfaces (BCIs) are systems that enable using neural activity to control and interact with external devices. For people who lose the ability to move or speak due to injury or disease, BCIs provide a potential avenue to restore this loss of function.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors

It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Microglia-Mediated Astrocyte Activation in Chronic Pain

While acute pain is an important biological signal in response to injured tissue, chronic pain occurs when the pain signaling outlasts the initial injury and has deleterious effects on health and quality of life. Chronic pain represents an enormous public health burden with few therapeutic options.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Mechanisms of plasma proteins that rejuvenate the aged brain

One in three people will develop Alzheimer’s disease or another dementia during their lifetime, but effective treatment still does not exist despite intense efforts. Recently, blood from young mice has been found to rejuvenate several tissues of old mice, including the brain.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Systematic identification of wiring specificity molecules in Drosophila olfactory circuit using single cell RNA-seq

Precise neural circuit assembly is critical for appropriate function of the nervous system. A functional circuit requires proper targeting and matching of axons and dendrites of pre- and post-synaptic neurons. However, our understanding of the mechanisms that establish wiring specificity of complex neural circuit is far from complete.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Developing a dopamine and neural systems model of anhedonia

    More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
In vivo analysis of cAMP dynamics in developing glial cells

Cyclic adenosine monophosphate (cAMP) is an important intracellular messenger that plays a critical role in the development of the central and peripheral nervous system. However, the mechanisms of action of cAMP in the nervous system development are poorly understood and there are currently no suitable methods to visualize cAMP in the cells of living animals.