Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
High-Fidelity Artificial Retina for Vision Restoration

This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
Seed Grant
2015
Massively parallel microwire arrays for deep brain stimulation
We will engineer next generation bundled microwires deep brain stimulation using microwires that are thinner than human hair. We will use a small LED display to deliver patterned stimulation by ‘playing a video’ on the display chip, where each pixel is connected to a microwire.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Brain mechanisms of spatial reasoning in mathematics
We aim to understand how brain mechanisms of spatial reasoning are brought into play during symbolic mathematical cognition and to identify individual differences in these mechanisms that co-vary with mathematical ability and mathematical experience.
Wu Tsai Neurosciences Institute
Seed Grant
2015
Creating an advanced transgenic animal model of autism

Autism is a highly genetic developmental brain disorder which is characterized by social impairments. Autism affects 1 in 68 US children, with an annual cost in the US of $250 billion dollars. Unfortunately, the basic biology of autism remains poorly understood.

Wu Tsai Neurosciences Institute
Seed Grant
2017
Identification of sex hormone interacting proteins
We are interested in elucidating the multiple roles that sex hormones play in development of the nervous system and in regulating brain functions that influence gender identity, puberty, and reproduction.
Wu Tsai Neurosciences Institute
Seed Grant
2017
TrkA-ing the chronic pain
A faculty team bridging chemistry and pain research will use optogenetics to understand an important signaling pathway involved in chronic pain.
Wu Tsai Neurosciences Institute
Seed Grant
2017
Remote and localized neural activation using sonomagnetic stimulation
This proposal aims to develop a new modality of noninvasive neural stimulation, sonomagnetic stimulation, that can generate an electrical current focused in a small volume deep in neural tissue, a goal not possible with any existing method of neurostimulation.
Wu Tsai Neurosciences Institute
Seed Grant
2017
The impact of early medial temporal lobe Tau in human cognitive aging
By measuring the aggregation of Tau protein in healthy older adults as well as those with Alzheimer's disease dementia using positron emission tomography imaging combined with high-resolution magnetic resonance imaging, this team hopes to predict who is at most risk for dementia in the future.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
Seed Grant
2019
Sensory processing in a pre-seizure state
This team will leverage the power of silicon probes to record from hundreds of neurons in mouse epilepsy models to understand neural correlates of the pre-seizure EEG. These results will be used to optimize a real-time seizure prediction algorithm that will be tested in human patients.
Wu Tsai Neurosciences Institute
Seed Grant
2019
Genetic tools to determine circuit-specific roles of myelination

These tools will enable us to dissect how myelin contributes to specific brain circuits and types of neurons, bringing us closer to a holistic understanding of how cells in the brain collaborate to build a functional nervous system.