Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Tracking Parkinson’s Disease with transformer models of everyday looking behaviors

It is more common nowadays for people to have their own wearable devices to measure physiological signals like heart rate and respiration to keep track of physical diseases. However, monitoring decline in cognitive functions or development of neurodegenerative diseases, such as Parkinson’s (PD), is still complex and tricky.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2023
Microglia-Mediated Astrocyte Activation in Chronic Pain

While acute pain is an important biological signal in response to injured tissue, chronic pain occurs when the pain signaling outlasts the initial injury and has deleterious effects on health and quality of life. Chronic pain represents an enormous public health burden with few therapeutic options.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
High-Fidelity Artificial Retina for Vision Restoration

This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2017
Developing a dopamine and neural systems model of anhedonia

    More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve

Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2015
Determining the microstructural basis of diffusion MRI

The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2018
Sustained release of growth factors from bioengineered synthetic "cells" for treating spinal cord injury

Spinal cord injury (SCI) is a debilitating condition that affects young adults between the ages of 16 and 30, which leads to lifelong medical and financial burdens. SCI still results in a decreased quality-of-life and lower life expectancy for patients. This is due in part to the lack of a regenerative-based therapeutic approach to treating SCI in the clinic.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2020
Reprogramming organismal lifespan through modulation of neuropeptidergic circuits

Aging is the number one risk factor for debilitating diseases such as neurodegeneration. Can manipulation of neurons in the brain alter the body’s physiological state to extend lifespan? Neuropeptides are key modulators of short-term homeostasis such as feeding, temperature, and sleep.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
Targeting DNA repair for neuroinflammation in stroke
Acute brain inflammation after stroke and head trauma causes adverse health outcomes affecting millions of patients each year in the U.S., and current treatments are insufficient. This project will test a promising new therapy to reduce inflammation by targeting the enzyme OGG1, a potentially important controller of acute inflammatory responses. This project is jointly supported by the Wu Tsai Neurosciences Institute and SPARK.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
CPStim: Optimized non-invasive brain stimulation for chronic pain
In light of the dual public health crises of chronic pain and opioids, there is an urgent need to develop non-addictive alternative therapies for chronic pain. This project's goal is to develop a new protocol for transcranial magnetic stimulation — a non-invasive method of neuromodulation — that is optimized for chronic pain treatment.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
Deep learning for automated seizure localization
Current automated seizure detection software is slow, inaccurate and rarely precise enough for clinicians to rely upon. This project aims to use cutting-edge AI methods to develop a powerful new algorithm that will enable better seizure diagnosis and treatment plan formation.
Wu Tsai Neurosciences Institute
Interdisciplinary Scholar Award
2021
Mechanisms of myelin membrane expansion

Myelin is the protective covering that surrounds nerve fibers to accelerate communication between different parts of the nervous system. Damage to myelin occurs in diseases such as multiple sclerosis, which compromises nerve signaling and impairs motor and cognitive function.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
Optimization of the African killifish platform for rapid drug screening for aggregate based neurodegenerative diseases
There are currently no available drugs for neurodegenerative diseases, including Alzheimer’s disease. Using the power of a new vertebrate aging model, the African killifish, this team is investigating age-dependent protein aggregation at a systems level and identifying aggregating proteins in the aging brain. There is huge potential to optimize the killifish platform for phenotypic screening of drug libraries, notably those targeted at protein aggregation, which is central to neurodegenerative diseases.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
Remote reliable measurements of movement using a Bluetooth enabled engineered keyboard solve an unmet need in neurological diseases

This team is developing a device that will enable accurate diagnosis of Parkinson’s disease via telemedicine. They initially introduced the technology of Quantitative DigitoGraphy (QDG) using a repetitive alternating finger tapping (RAFT) task on a musical instrument digital interface (MIDI) keyboard and will use Neuroscience: Translate funding for the next stage of device development.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Topical Hedgehog modulators to enhance motor nerve regeneration after injury and repair
This team has identified a small-molecule drug pathway that can improve functional recovery from nerve injury. The team will use the Neuroscience:Translate funds to test several approaches to topically apply this compound directly to damaged nerves during surgery to safely improve patient outcomes.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2022
Extended Reality(XR) enhanced behavioral activation for treatment of Major Depressive Disorder

This team has created an extended reality–enhanced implementation of "behavioral activation," one of the most effective forms of evidence-based psychotherapy for major depression. They will use the Neuroscience:Translate award to test the efficacy and scalability of this approach and accelerate the development of extended reality technologies to improve treatment options for major depression.