Project Listing
High-speed force probes for deconstructing the biophysics of mechanotransduction
The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders.
NeuroChoice Initiative (Phase 2)
We propose to connect diverse faculty to deepen interdisciplinary understanding of the neural mechanisms supporting addictive choice by combining conceptual, experimental, and clinical approaches that bridge historically disparate fields of inquiry.
Stanford NeuroTechnology Initiative (Phase 2)
Our goal is to develop the next generation of neural interfaces that match the resolution and performance of the biological circuitry. We will focus on two signature efforts to spearhead the necessary advances: high-density wire bundles for electrical recording and stimulation, and analog and digital bi-directional retinal prostheses for restoration of vision.
Stanford Brain Rejuvenation Project (Phase 2)
The Stanford Brain Rejuvenation Project is an initiative by leading aging researchers, neuroscientists, chemists, and engineers to understand the basis of brain aging and rejuvenation and how they relate to neurodegeneration.
Neuro-circuit interventional research consortium for understanding the brain and improving treatment
Combining a detailed understanding of brain circuits with technology that modulates neural activity to develop improved ways of treating mental health conditions.
NeuroVision Initiative
The goal is to forge an inter-disciplinary collaboration between physicists, biologists, chemists, and translational medical scientists by inventing new ways of visualizing the brain, from individual molecules to neuronal circuits to entire brain regions, from a normally functioning neuron to a diseased brain.
The NeuroFab: The hub for new ideas in neuro-engineering
Creating an incubator for next-generation neural interface platforms.
Brain-machine interfaces: Science, engineering, and application
Developing technology to interface with the brain and create intelligent prosthetics.
Stroke Collaborative Action Network
Breaches barriers in our understanding of stroke to develop therapies and improve stroke recovery.
Mechanisms of plasma proteins that rejuvenate the aged brain
One in three people will develop Alzheimer’s disease or another dementia during their lifetime, but effective treatment still does not exist despite intense efforts. Recently, blood from young mice has been found to rejuvenate several tissues of old mice, including the brain.
Systematic identification of wiring specificity molecules in Drosophila olfactory circuit using single cell RNA-seq
Precise neural circuit assembly is critical for appropriate function of the nervous system. A functional circuit requires proper targeting and matching of axons and dendrites of pre- and post-synaptic neurons. However, our understanding of the mechanisms that establish wiring specificity of complex neural circuit is far from complete.
Developing a dopamine and neural systems model of anhedonia
More than 60 million people in the United States currently suffer from a serious mental illness, and the associated financial, productivity and human suffering costs are only projected to rise in the near future.
In vivo analysis of cAMP dynamics in developing glial cells
Cyclic adenosine monophosphate (cAMP) is an important intracellular messenger that plays a critical role in the development of the central and peripheral nervous system. However, the mechanisms of action of cAMP in the nervous system development are poorly understood and there are currently no suitable methods to visualize cAMP in the cells of living animals.
Combining electrical and optical measurements on voltage-gated sodium channel toxins
Ion channels in the membranes of neuronal cells are the key regulators of neuronal signaling. An ion channel works as a gate that can open and close to allow specific molecules to enter or leave the cell. One important type of ion channels are voltage-gated sodium channels (NaVs), which are essential for many processes in our brain.
Cognitive remediation of distraction to reduce striatal dysregulation and improve clinical outcomes for individuals with psychosis
The ability to ignore distracters is impaired for individuals with psychosis. This impairment negatively impacts treatment effectiveness and the ability of individuals with psychosis to function fully.
Understanding a complete neural computation in the primate visual system
Understanding the brain requires understanding how the neurons that constitute it perform computations, and how those computations relate to human behavior.
Investigation of synapse formation by novel nanoscale imaging techniques
Synaptic junctions linking individual neurons constitute the fundamental building blocks of our brain. Understanding their inner working is crucial to unravel the mechanisms by which our brain processes information. However, imaging structures at a relevant sub-synaptic level is challenging and has often hampered advances in neuroscience.
The molecular and cellular basis of magnetosensation: quantum effects in biological systems
For decades we have known that a wide variety of animals use the earth’s magnetic field for navigation, although the means by which they sense it has remained a mystery. There is a long-standing idea that animals like migratory birds use small magnetic deposits in their beaks to act as a compass, however, this idea remains unverified and is currently questioned by many in the field.
Enabling cell-based therapy of spinal cord injury through injectable hydrogels
Spinal cord injury (SCI) causes permanent damage to about 12,000 new patients in the US each year, primarily young adults. A common result of SCI is paralysis, and unfortunately, less than 1% of SCI patients have full neurological recovery by the time of hospital discharge.
Simultaneous 15O-PET and MRI of cerebral blood flow and cerebrovascular reserve
Continuous blood flow to the brain is needed for neural tissues to survive. Noninvasive imaging of cerebral blood flow (CBF) in humans is challenging, but is critically useful to understand normal brain physiology and to help patients with cerebrovascular disorders such as stroke.
Genomic analysis of the gene regulatory landscape of the developing neocortex
This research seeks to understand how our genes encode the instructions for neurons in the neocortex to properly arise during normal brain development. This knowledge will allow scientists to understand how genetic mutations perturb development leading to human disease.
The role of non-canonical GABA synthesis in midbrain dopamine neurons on striatal inhibition
Due to the critical role that dopamine producing neurons play in pathophysiology, it is important to examine the function of its co-released GABA. This research aims to study GABA biosynthesis in midbrain dopamine producing neurons and it’s effect on striatal inhibition.
Determining the microstructural basis of diffusion MRI
The aim of this project is to improve the accuracy and reliability of dMRI fiber tracking through comparison with a gold standard that unambiguously relates the measured water diffusion patterns to the underlying tissue structure.
Using nanoelectrodes to measure brown adipose tissue sympathetic nerve activity in vivo
Everyone is well aware of their white adipose tissue and its ability to store excess energy as fat. In fact the efficiency with which it does this has led to obesity and related metabolic diseases becoming the largest single health burden in the United States.