Funded Projects

Browse wide-ranging research at the frontiers of neuroscience supported by Wu Tsai Neurosciences Institute grants, awards, and training fellowships.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
High-Fidelity Artificial Retina for Vision Restoration

This team will use their Neuroscience:Translate award to develop a large-scale bi-directional neural interface that will restore high-fidelity vision to people blinded by retinal degeneration.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2023
New Thrombectomy Device for Endovascular Neurosurgery

This team will use their Neuroscience:Translate award to develop an entirely new class of ischemic stroke treatment device that will lead to improved clot extraction to improve the success of endovascular thrombectomy.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed force probes for deconstructing the biophysics of mechanotransduction

The purpose of this collaborative project is to study neuronal mechanisms associated with social stress. In particular we will test whether the energy producing systems, known as mitochondria, in a specific set of brain cells are important to confer resilience to stressful stimuli. This research may lead to treatments of stress and anxiety disorders. 

 

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
High-speed nanomechanical probing of auditory mechano-sensitive cells

Our ability to detect and interpret sounds relies on specialized sensory cells within the snail-shaped hearing organ of the inner ear—the cochlea. These hair cells sense physical movement and then convert that mechanical stimulus into a biological signal that we perceive as sound. These mechano-sensory cells perform this task within microseconds and can do so for sub-nanomechanical stimuli.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Quantitative imaging for multi-scale modeling of neurological diseases

My proposed visit to the Van De Ville lab is centered on the idea to expand our methods beyond brain tumors to other neurological diseases using the Van De Ville lab’s expertise in neuro-imaging. Imaging genomics has been focused mainly on oncology; however, other neurological diseases can be studied in the same way.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
2017
Biologically plausible neural algorithms for learning structured sequences

Humans naturally learn to generate and process complicated sequential patterns. For example, a concert pianist can learn an enormous repertoire of memorized music. In neuroscience, it is widely thought that synaptic plasticity – the process by which the connections between neurons change response to experience – underlies such remarkable behavior.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2019
Multi-modal deep learning for automated seizure localization

Developing an automated seizure detection and localization system based on deep neural networks, EEG data, and real-time video with the goal to dramatically increase neurologist diagnostic capabilities while improving quality of care.

Wu Tsai Neurosciences Institute
EPFL-Stanford Exchange
Modelling the Pupil Light Reflex for Non-Image Forming Vision

Although you’re aware of the light that you see, light also affects us in ways that you might not appreciate. These so called “non-image forming” (NIF) pathways were recently discovered, they start in the human eye before projecting to over a dozen brain regions. They modulate aspects of human function including our daily rhythms, our sleep patterns, the way we feel and the way we think.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
Targeting DNA repair for neuroinflammation in stroke
Acute brain inflammation after stroke and head trauma causes adverse health outcomes affecting millions of patients each year in the U.S., and current treatments are insufficient. This project will test a promising new therapy to reduce inflammation by targeting the enzyme OGG1, a potentially important controller of acute inflammatory responses. This project is jointly supported by the Wu Tsai Neurosciences Institute and SPARK.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
The wearable ENG: A dizzy attack event monitor
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
PTS glove passive tactile stimulation for stroke rehab - Renewal

This team is developing wearable stimulation devices to improve limb function after stroke. The technology includes a tactile stimulation method, and the wireless, lightweight, and low-cost wearable computing devices to apply this stimulation.

Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
CPStim: Optimized non-invasive brain stimulation for chronic pain
In light of the dual public health crises of chronic pain and opioids, there is an urgent need to develop non-addictive alternative therapies for chronic pain. This project's goal is to develop a new protocol for transcranial magnetic stimulation — a non-invasive method of neuromodulation — that is optimized for chronic pain treatment.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2020
Deep learning for automated seizure localization
Current automated seizure detection software is slow, inaccurate and rarely precise enough for clinicians to rely upon. This project aims to use cutting-edge AI methods to develop a powerful new algorithm that will enable better seizure diagnosis and treatment plan formation.
Wu Tsai Neurosciences Institute
Neuroscience:Translate Award
2021
The wearable ENG: a dizzy attack event monitor, Dizzy DX - Renewal
Recurrent dizziness attacks are a debilitating condition for 10% of the population during their lifetime, and can lead to a complete inability to function, and to multiple hospital admissions and investigations chasing many potential diagnoses. This project aims to address the unmet need for means of tracking patients' specific symptoms, so that correct treatments can be identified that will improve patients' function and quality of life.